m常用信道编译码算法matlab对比仿真,包括RS,BCH,turbo,LDPC以及RSBCH级联等

简介: m常用信道编译码算法matlab对比仿真,包括RS,BCH,turbo,LDPC以及RSBCH级联等

1.算法仿真效果
matlab2022a仿真结果如下:

image.png
08ce37b5d11486ba202f2b603e858dab_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
编码和解码是数字通信系统中的关键技术,用于提高数据传输的可靠性。RS码(Reed-Solomon码)、BCH码(Bose-Chaudhuri-Hocquenghem码)、Turbo码、LDPC码(Low-Density Parity-Check码)以及RSBCH级联码是常见的编码方案,每种编码都有其独特的原理和特点。

2.1. RS码(Reed-Solomon码):
RS码是一种纠错码,能够在数据中包含多个冗余位,从而实现差错检测和纠正。它基于有限域理论,将数据分块并在每个块末尾添加一些冗余位。当接收到受损数据时,RS码可以检测出错误的位置并进行纠正。RS码适用于各种信道条件,尤其在存在突发错误的信道中表现出色。

2.2. BCH码(Bose-Chaudhuri-Hocquenghem码):
BCH码是一种广义的RS码,也是一种纠错码。与RS码类似,BCH码通过在数据中添加一些冗余位来实现差错检测和纠正。它适用于高比特率和高噪声信道,具有更好的纠错性能。BCH码能够处理多比特错误,因此在存储介质和无线通信领域得到广泛应用。

2.3. Turbo码:
Turbo码是一种迭代编码方案,由两个分量编码器和一个交织器构成。它通过交织器将输入数据分成多个块,然后交替使用两个分量编码器进行编码。接收端采用迭代译码算法进行解码,迭代地更新估计信息,从而提高纠错性能。Turbo码在无线通信系统中被广泛使用,具有出色的性能,尤其在高信噪比和深衰落信道中。

2.4. LDPC码(Low-Density Parity-Check码):
LDPC码是一种分布式图形码,采用图论的方法来设计。LDPC码通过在编码图中使用稀疏校验矩阵,从而降低解码复杂度。它在现代通信系统中得到广泛应用,具有出色的性能和低解码复杂度。LDPC码特别适用于高容量通信系统,如卫星通信和光纤通信。

2.5. RSBCH级联码:
RSBCH级联码是一种混合编码方案,将RS码和BCH码级联使用。它综合了RS码和BCH码的优点,既具有RS码的纠错能力,又具有BCH码的高纠错性能。RSBCH级联码适用于要求高纠错性能的应用场景,如存储介质和高可靠通信系统。

总之,不同的编码方案在不同的应用场景中具有不同的优势。选择适合特定应用需求的编码方案,可以显著提高数据传输的可靠性和性能。

3.MATLAB核心程序

%%
%开始循环,进行误码率仿真
for i=1:length(SNR)
    i
    Bit_err(i)    = 0; %设置误码率参数
    Num_err       = 0; %蒙特卡洛模拟次数
    Numbers       = 0; %误码率累加器
    %信道参数
    Hsd = 1;
    Hsr = 1;
    Hrd = 1;

    while Num_err <= 5000    
        fprintf('Eb/N0 = %f\n', SNR(i));
        Num_err
        N0  = 2*10^(-EbN0(i)/10);
        Trans_data             = round(rand(N-M,1));           %产生需要发送的随机数
        [ldpc_code,newH]       = func_Enc(Trans_data,H1);      %LDPC编码
        u                      = [ldpc_code;Trans_data];       %LDPC编码
        Trans_BPSK             = 2*u-1;                        %BPSK
        %S->D 
        Rec_sd                 = Hsd*Trans_BPSK+sqrt(N0/2)*randn(size(Trans_BPSK));
        %接收端
        [vhatsd,nb_itersd,successsd] = func_Dec(Rec_sd,newH,N0,Max_iter);
        [nberr,rat] = biterr(vhatsd(M+1:N)',Trans_data);
        %LDPC译码 
        Num_err              = Num_err+nberr;
        Numbers              = Numbers+1;
    end
    Bit_err(i) = Num_err/(N*Numbers);
end
figure;
semilogy(SNR,Bit_err,'o-');
xlabel('Es/N0(dB)');
ylabel('BER');
grid on;
相关文章
|
7天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
20天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
156 80
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。