彻底搞定数据产品选型-报表平台、BI平台、大数据平台、数据中台一网打尽

简介: 彻底搞定数据产品选型-报表平台、BI平台、大数据平台、数据中台一网打尽

这是我的第47篇原创

来吧,废话不多说,直接上干货!


报表平台

到现在还在做报表的,已经很少了。上面三家都是中国主流报表厂商。不过在国外BI厂商的市场压力面前,也都做了BI套件。主流的就帆软和润乾,水晶报表最近见的少了。

普通小厂,1、2个数据工作者,建议采购一个报表平台就行了,不用买BI软件。

帆软功能齐全,生态很好,人比较好招,还有升级版帆软BI。但是价格略贵,乙方不建议用。

润乾价格便宜,一套万把块钱,如果年付的话,可以无限量安装,多一套也就多千把块钱。比较适合乙方。市场有“南帆软,北润乾”的说法


BI平台

早期都是国外市场的天下,BO、Brio、Cognos、MSTR等,都是老牌BI厂商了,我做纯技术的时候就大量使用他们的产品。东西都不便宜,而且是按产品+用户双重收费,不太划算。

早期国内只有报表,结果大单都被国外BI厂商接走了,于是他们痛定思痛,认真学习,就有了帆软BI、海致BDP、润乾BI、SmartBI、亿信BI等产品。东西也不差,价格比国外的美丽多了。而且基本都只是限定服务器,不限定用户数,怎么用都OK。

不过用BI,就不是2、3个人的事情了,必须得建数仓,然后再做各种可视化、多维分析等。所以就得有数仓工程师、ETL工程师、BI工程师等岗位。当然,你要是牛,一个人全兼了也没问题。

中型厂商,有好几个系统的,建议采购一套BI系统,什么数仓、指标体系、固定报表、多维分析、数据可视化就都有了。建设期得多几个人,建好之后就很舒服了,业务固定的话,留两个人维护就OK了。


大数据平台

2013年左右,Hadoop体系的不断完善,标志着大数据应用场景可以被满足了。这时候就有前沿的一些企业开始做大数据平台。厂商特别多,主流的就说3个吧:

这几年这些厂商也开始往“数据中台”的概念上走。但是毕竟是传统软件厂商,有点搞不太懂互联网公司提的“数据中台”到底是啥,貌似跟他们做的大数据平台没啥区别。

其实所有大数据平台都已经具备了“数据中台”的基础能力,你拿大数据平台和数据中台的产品对一下,各种功能其实基本都一样,只是数据中台加了一些类似3One、标签工厂等概念。

如果你的公司有很多业务系统,数据量非常大,面临海量数据的存储、计算的需求,随便找上门三个里挑一个,肯定够用。


数据中台

“中台”的概念就是阿里推广开的。阿里从SuperCell学过来这一套,然后化为阿里内功后,再向外推广。“数据中台”也是那时候一起推广出来的。所以主要的厂商都是阿里系的人出来创业的公司。

袋鼠云、数澜、奇点云都是阿里的P9出来创办的公司,技术都差不多。

袋鼠云是阿里DBA团队出来的,比较鸡贼,牢牢的跟阿里绑死,阿里接单,袋鼠云干活,跟在阿里一样一样的。

数澜是阿里产品团队出来的,产品设计的比较ok,宣传的也很不错,业务开展的风生水起。

奇点云是阿里数仓和数加团队出来的,貌似宣传的没上面两个强,接触不多。

数加是阿里自己的产品。

云徙科技很有意思。自己本身技术能力不强。但是它一直打的“双中台”的概念,接了项目之后,自己负责业务中台这边,技术这边的事情就分包给袋鼠云。他们只做行业内头部企业。


如果你们公司业务复杂,数据量大,有多个客户应用场景,需要大量的客户数据价值发现,那你可以考虑上一个中台。


更多数据中台的信息,可以参考我的另外一篇文章:《一口气说穿数据中台-给你架构师的视角》,点击链接即可查看。

总结

报表平台解决固定报表、数据可视化的工作;1、2个报表工程师就能搞定了;

BI平台是在报表平台上增加解决多维分析、自助查询报表的能力,需要数仓团队做底层数据支撑,需要BI工程师设定各种度量、维度,做多维分析报表;不用一张张的做固定报表了;

大数据平台是在BI平台基础上,解决大数据量的存储、计算、实时计算的问题;无需关注底层的海量数据存储、计算、实时计算等问题;需要增加大数据工程师进行集群的维护,基于大数据平台的各种开发工作。

数据中台是在大数据平台基础上,提供ID打通、统一模型、统一服务的能力,附加标签工厂、用户分析等偏互联网属性的功能。人员需要增加数据中台产品经理,其他的工作还是由大数据工程师、大数据分析师等完成。

数据治理能力是从BI平台就开始有了,在大数据平台和数据中台中不断被强化。所以BI平台、大数据平台、数据中台中都有数据治理的能力。在数据中台中还增加了数据资产和计费的概念和能力。

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
3月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
304 14
|
4月前
|
数据采集 SQL 搜索推荐
大数据之路:阿里巴巴大数据实践——OneData数据中台体系
OneData是阿里巴巴内部实现数据整合与管理的方法体系与工具,旨在解决指标混乱、数据孤岛等问题。通过规范定义、模型设计与工具平台三层架构,实现数据标准化与高效开发,提升数据质量与应用效率。
大数据之路:阿里巴巴大数据实践——OneData数据中台体系
|
5月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
209 4
|
4月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
181 0
|
5月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
337 3
|
5月前
|
SQL 人工智能 分布式计算
ODPS:数据浪潮中的成长与突围
本文讲述了作者在大数据浪潮中,通过引入阿里云ODPS体系(包括MaxCompute、DataWorks、Hologres)解决数据处理瓶颈、实现业务突破与个人成长的故事。从被海量数据困扰到构建“离线+实时”数据架构,ODPS不仅提升了数据处理效率,更推动了技术能力与业务影响力的双重跃迁。
|
4月前
|
机器学习/深度学习 算法 大数据
构建数据中台,为什么“湖仓一体”成了大厂标配?
在大数据时代,数据湖与数据仓库各具优势,但单一架构难以应对复杂业务需求。湖仓一体通过融合数据湖的灵活性与数据仓的规范性,实现数据分层治理、统一调度,既能承载海量多源数据,又能支撑高效分析决策,成为企业构建数据中台、推动智能化转型的关键路径。
|
3月前
|
机器学习/深度学习 数据采集 搜索推荐
企业大数据的“超级大脑”:AIIData数据中台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
企业大数据的“超级大脑”:AIIData数据中台
|
3月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
158 14
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。