Graph + LLM|图数据库技术如何助力行业大语言模型应用落地

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
简介: 图数据库作为处理复杂数据结构的有力工具,为企业构建行业大语言模型提供了强大的支持。本文将探讨图数据库和图技术在帮助企业构建行业大语言模型方面的应用,以及它们如何提高语言模型的智能性和适用性。

随着 AI 人工智能技术的迅猛发展和自然语言处理领域的研究日益深入,如何构建强大的大语言模型对于企业来说愈发重要,尤其是在特定行业领域中。

图数据库作为处理复杂数据结构的有力工具,为企业构建行业大语言模型提供了强大的支持。本文将探讨图数据库和图技术在帮助企业构建行业大语言模型方面的应用,以及它们如何提高语言模型的智能性和适用性。

行业大模型的机遇与挑战

在信息爆炸的时代,海量的自然语言文本涌现,企业需要处理大量来自不同渠道的文本数据,以获取有价值的信息和洞察。

行业大语言模型(LLM)是针对特定行业领域的大规模自然语言处理模型,可以理解、分析和生成与该行业相关的文本信息。它具有广泛的应用场景,如舆情分析、智能客服、信息抽取等。企业搭建自有行业大模型不仅可以释放人工绝大部分重复性、繁琐的日常查询工作,更能利用大模型的学习和推理能力实现行业的深度洞察,发现新的业务视角和增长点。

另一方面,行业大语言模型的构建也面对着巨大的压力与挑战,包括数据预处理、领域知识的获取、文本分类、关系提取等方面。搭建企业专属的行业大语言模型不仅需要深刻理解行业领域的专业知识和术语,以保证模型的准确性和可靠性,还需要有一定的知识推理和联想能力,以应对多种环境下复杂的用户需求。

传统的训练方法存在训练成本高、效率低、上下文信息不足的问题,导致大语言模型难以在生产环境中真正落地——而图数据库在海量、多样化、复杂数据场景中处理能力和直观、灵活、高效的特性恰好能解决这些问题,因此正被广泛应用于大模型训练和多种实际应用场景。

图技术如何提升大语言模型能力?

模型训练和上下文学习

图数据库是一种以点边形式存储和呈现数据的新型数据库。凭借图形格式组织和连接信息的方式,天然适合存储及表达复杂的上下文信息。图数据库中的节点表示实体,边表示实体之间的关系,因此能够允许高效地存储、检索和分析复杂的多维数据。

通过图技术构建知识图谱提升 In-Context Learning 的全面性为用户提供更多的上下文信息,能够帮助大语言模型(LLM)更好地理解实体间的关系,提升自己的表达和推理能力。

同时,通过图数据库将文本中的实体与图谱中的实体进行关联,有助于消除实体在文本中的歧义,使语言模型能够正确识别实体并从知识图谱中获取更多信息。

行业数据分析及预测

图数据库可以用于存储和管理行业数据,将结构化和非结构化数据整合在一起。这使得语言模型能够从图数据库中获取行业数据,并进行深入的数据分析。

图数据库中存储的行业数据可以作为语言模型的训练数据和参考数据,帮助模型更好地理解行业领域的背景和特点。同时,企业还可以利用图数据库进行行业数据分析和预测,为决策提供更深入的洞察和决策支持。大语言模型亦可以借助图数据库中的数据,进行行业趋势分析、市场预测等工作。

语义搜索和推荐系统

图技术可以用于构建语义搜索和推荐系统,通过图数据库中实体之间的关系,发现文本数据的语义相似性和关联性。语言模型可以借助图技术更智能地进行搜索和推荐,提供更加准确和个性化的结果。

关系提取和语义理解

通过图技术,可以从大规模文本数据中提取实体之间的关系和语义信息。这有助于语言模型更好地理解文本的上下文和含义,提高模型在行业领域的理解能力。

图数据库与大语言模型的行业应用

医疗健康行业

在医疗健康行业,海量的医学文献、临床数据和患者病历等信息需要进行有效的管理和分析。借助图数据库和图技术,企业可以构建医疗健康领域的大语言模型。通过构建医疗知识图谱,将医学实体(如疾病、药物、治疗方法等)和它们之间的关系进行建模,语言模型可以从中获取丰富的医学知识。在实体链接和实体消解方面,图技术可以帮助将医学文本中提及的实体准确地对应到知识图谱中,消除歧义,提高模型的准确性。医疗健康行业大语言模型的构建可以应用于智能诊断、疾病预测、个性化医疗建议等,为医疗领域提供更精准和智能的解决方案。

金融保险行业

在金融领域,复杂的金融数据需要进行深入的分析和预测。图数据库和图技术可以帮助构建金融领域的知识图谱,将金融实体(如股票、交易、金融指标等)和它们之间的关系进行建模。语言模型可以从中获取金融领域的专业知识,并在金融数据分析、投资决策等方面发挥重要作用。利用图技术进行关系提取和语义理解,可以从金融新闻、研究报告等文本中提取关键信息,帮助语言模型更好地理解金融市场的动态和趋势。金融领域的大语言模型应用可以应用于投资分析、风险管理、智能客服等,为金融行业带来更智能和高效的服务。

电商零售业

在零售业,企业需要处理大量的商品信息、用户评论、销售数据等。图数据库和图技术可以帮助构建零售行业的知识图谱,将商品、品牌、用户等实体和它们之间的关系进行建模。语言模型可以从中获取零售行业的专业知识,并在商品推荐、用户个性化服务等方面发挥作用。利用图技术进行实体链接和关系提取,可以从用户评论中抽取有用信息,帮助语言模型更好地了解用户需求和购物偏好。零售业中的行业大语言模型应用可以应用于智能商品推荐、客户细分、市场趋势分析等,为零售企业提供更智能化和个性化的购物体验。

未来展望:图数据库与语言模型的融合与落地

随着大数据和人工智能技术的不断发展,图技术和语言模型的深度融合将成为未来发展的趋势。图技术可以为语言模型提供更丰富的知识基础和语义理解能力,帮助模型更好地理解行业知识和语义。未来,图数据库将更加高效、灵活和智能,能够处理更大规模、更复杂的图结构数据。

作为一款国产的原生分布式图数据库,悦数图数据库具有性能高效、安全稳定、易于扩展的特点。目前,悦数图数据库通过将自身图技术与自然语言处理技术(NLP)等紧密结合,为企业提供了强大的数据管理、语义理解和信息提取能力。其高效、灵活和智能的特性,能够帮助处理更大规模、更复杂的图结构数据,为企业构建行业大语言模型提供更强大的基础技术底座支持。

与此同时,悦数图数据库也是国内首家引入了 LangChain 的图数据库厂商,率先实现了基于 Knowledge  Graph + Vector DB 的 retrieval-augmented generation (Graph In-Context  Learning)方案。同时,悦数图数据库正致力于将 “GraphStore” 存储上下文引入 Llama  Index,从而引入知识图谱的外部存储,全面打造更高效易用的「图+ LLM」 解决方案。通过提供面向 AIGC、LLM  等智能应用的图基础设施,帮助企业轻松构建关联海量数据的知识图谱,全面提升行业大模型的训练和部署成本,形成更敏捷、高效、易用的人工智能应用。

未来,行业大语言模型将在更多的行业领域得到应用。随着图数据库和图技术的不断发展和应用,行业大语言模型将变得越来越智能化、定制化。它们将帮助企业更好地理解行业数据、洞察市场趋势、优化业务决策,为企业的创新和发展带来更多的机遇和动力。

您可以点击 Demo 链接,一起来体验使用自然语言实现知识图谱构建&查询的乐趣。也欢迎通过官网或公众号关注我们,和悦数图数据库一起链接数智未来新时代!

相关实践学习
阿里云图数据库GDB入门与应用
图数据库(Graph Database,简称GDB)是一种支持Property Graph图模型、用于处理高度连接数据查询与存储的实时、可靠的在线数据库服务。它支持Apache TinkerPop Gremlin查询语言,可以帮您快速构建基于高度连接的数据集的应用程序。GDB非常适合社交网络、欺诈检测、推荐引擎、实时图谱、网络/IT运营这类高度互连数据集的场景。 GDB由阿里云自主研发,具备如下优势: 标准图查询语言:支持属性图,高度兼容Gremlin图查询语言。 高度优化的自研引擎:高度优化的自研图计算层和存储层,云盘多副本保障数据超高可靠,支持ACID事务。 服务高可用:支持高可用实例,节点故障迅速转移,保障业务连续性。 易运维:提供备份恢复、自动升级、监控告警、故障切换等丰富的运维功能,大幅降低运维成本。 产品主页:https://www.aliyun.com/product/gdb
相关文章
|
1月前
|
数据库 索引
深入探索数据库索引技术:回表与索引下推解析
【10月更文挑战第15天】在数据库查询优化的领域中,回表和索引下推是两个核心概念,它们对于提高查询性能至关重要。本文将详细解释这两个术语,并探讨它们在数据库操作中的作用和影响。
47 3
|
1月前
|
数据库 索引
深入理解数据库索引技术:回表与索引下推详解
【10月更文挑战第23天】 在数据库查询性能优化中,索引的使用是提升查询效率的关键。然而,并非所有的索引都能直接加速查询。本文将深入探讨两个重要的数据库索引技术:回表和索引下推,解释它们的概念、工作原理以及对性能的影响。
51 3
|
1月前
|
负载均衡 网络协议 数据库
选择适合自己的数据库多实例负载均衡技术
【10月更文挑战第23天】选择适合自己的数据库多实例负载均衡技术需要全面考虑多种因素。通过深入的分析和评估,结合自身的实际情况,能够做出明智的决策,为数据库系统的高效运行提供有力保障。
108 61
|
27天前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
80 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
21天前
|
缓存 NoSQL 数据库
运用云数据库 Tair 构建缓存为应用提速,完成任务得苹果音响、充电套装等好礼!
本活动将带大家了解云数据库 Tair(兼容 Redis),通过体验构建缓存以提速应用,完成任务,即可领取罗马仕安卓充电套装,限量1000个,先到先得。邀请好友共同参与活动,还可赢取苹果 HomePod mini、小米蓝牙耳机等精美好礼!
|
28天前
|
SQL Java 数据库连接
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率。本文介绍了连接池的工作原理、优势及实现方法,并提供了HikariCP的示例代码。
44 3
|
28天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
52 2
|
1月前
|
缓存 负载均衡 监控
数据库多实例的负载均衡技术深入
【10月更文挑战第23天】数据库多实例负载均衡技术是确保数据库系统高效运行的重要手段。通过合理选择负载均衡策略、实时监控实例状态、不断优化调整,能够实现资源的最优分配和系统性能的提升。在实际应用中,需要根据具体情况灵活运用各种负载均衡技术,并结合其他相关技术,以满足不断变化的业务需求。
|
1月前
|
Java 数据库连接 数据库
优化之路:Java连接池技术助力数据库性能飞跃
在Java应用开发中,数据库操作常成为性能瓶颈。频繁的数据库连接建立和断开增加了系统开销,导致性能下降。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接,显著减少连接开销,提升系统性能。文章详细介绍了连接池的优势、选择标准、使用方法及优化策略,帮助开发者实现数据库性能的飞跃。
28 4
|
28天前
|
Java 数据库连接 数据库
深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能
在Java应用开发中,数据库操作常成为性能瓶颈。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能。文章介绍了连接池的优势、选择和使用方法,以及优化配置的技巧。
27 1