Elasticsearch之数据建模实战通过应用层join实现用户与博客的关联

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: Elasticsearch之数据建模实战通过应用层join实现用户与博客的关联

1、构造用户与博客数据

在构造数据模型的时候,还是将有关联关系的数据,然后分割为不同的实体,类似于关系型数据库中的模型

案例背景:博客网站, 我们会模拟各种用户发表各种博客,然后针对用户和博客之间的关系进行数据建模,同时针对建模好的数据执行各种搜索/聚合的操作

PUT /website/users/1 
{
  "name":     "小鱼儿",
  "email":    "xiaoyuer@sina.com",
  "birthday":      "1980-01-01"
}
PUT /website/blogs/1
{
  "title":    "我的第一篇博客",
  "content":     "这是我的第一篇博客,开通啦!!!"
  "userId":     1 
}

一个用户对应多个博客,一对多的关系,做了建模

建模方式,分割实体,类似三范式的方式,用主外键关联关系,将多个实体关联起来

2、搜索小鱼儿发表的所有博客

GET /website/users/_search 
{
  "query": {
    "term": {
      "name.keyword": {
        "value": "小鱼儿"
      }
    }
  }
}
{
  "took": 91,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "website",
        "_type": "users",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "name": "小鱼儿",
          "email": "xiaoyuer@sina.com",
          "birthday": "1980-01-01"
        }
      }
    ]
  }
}

比如这里搜索的是,1万个用户的博客,可能第一次搜索,会得到1万个userId

GET /website/blogs/_search 
{
  "query": {
    "constant_score": {
      "filter": {
        "terms": {
          "userId": [
            1
          ]
        }
      }
    }
  }
}

第二次搜索的时候,要放入terms中1万个userId,才能进行搜索,这个时候性能比较差了

{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "website",
        "_type": "blogs",
        "_id": "1",
        "_score": 1,
        "_source": {
          "title": "小鱼儿的第一篇博客",
          "content": "大家好,我是小鱼儿,这是我写的第一篇博客!",
          "userId": 1
        }
      }
    ]
  }
}

上面的操作,就属于应用层的join,在应用层先查出一份数据,然后再查出一份数据,进行关联

3、优点和缺点

优点:数据不冗余,维护方便

缺点:应用层join,如果关联数据过多,导致查询过大,性能很差


相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
目录
相关文章
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
753 6
|
6月前
|
人工智能 自然语言处理 运维
让搜索引擎“更懂你”:AI × Elasticsearch MCP Server 开源实战
本文介绍基于Model Context Protocol (MCP)标准的Elasticsearch MCP Server,它为AI助手(如Claude、Cursor等)提供与Elasticsearch数据源交互的能力。文章涵盖MCP概念、Elasticsearch MCP Server的功能特性及实际应用场景,例如数据探索、开发辅助。通过自然语言处理,用户无需掌握复杂查询语法即可操作Elasticsearch,显著降低使用门槛并提升效率。项目开源地址:<https://github.com/awesimon/elasticsearch-mcp>,欢迎体验与反馈。
1615 1
|
存储 搜索推荐 数据建模
Elasticsearch 的数据建模与索引设计
【9月更文第3天】Elasticsearch 是一个基于 Lucene 的搜索引擎,广泛应用于全文检索、数据分析等领域。为了确保 Elasticsearch 的高效运行,合理的数据建模和索引设计至关重要。本文将探讨如何为不同的应用场景设计高效的索引结构,并分享一些数据建模的最佳实践。
486 2
|
存储 数据采集 数据处理
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
580 12
|
缓存 数据处理 数据安全/隐私保护
Elasticsearch索引状态管理实战指南
Elasticsearch索引状态管理实战指南
243 0
|
存储 索引
Elasticsearch中父子文档的关联:利用Join类型赋予文档的层级关系
Elasticsearch中父子文档的关联:利用Join类型赋予文档的层级关系
|
5月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
2441 0
|
6月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
991 1
|
11月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
417 5
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo

热门文章

最新文章