【Python入门系列】第十九篇:Python基于协同过滤推荐系统的实现

简介: 推荐系统是现代互联网平台中的重要组成部分,它可以根据用户的兴趣和行为,向其推荐个性化的内容。协同过滤是推荐系统中常用的一种方法,它基于用户的行为数据,通过计算用户之间的相似度,找到相似用户的喜好,从而给用户推荐相似的内容。

前言

推荐系统是现代互联网平台中的重要组成部分,它可以根据用户的兴趣和行为,向其推荐个性化的内容。协同过滤是推荐系统中常用的一种方法,它基于用户的行为数据,通过计算用户之间的相似度,找到相似用户的喜好,从而给用户推荐相似的内容。

一、协同过滤算法简介

协同过滤是一种基于用户和物品之间关系的推荐算法。它主要分为两类:基于用户的协同过滤(User-Based Collaborative Filtering,简称UBCF)和基于物品的协同过滤(Item-Based Collaborative Filtering,简称IBCF)。

  • 基于用户的协同过滤:通过计算用户之间的相似度,找到与目标用户相似的用户,再推荐这些相似用户喜欢的物品给目标用户。
  • 基于物品的协同过滤:通过计算物品之间的相似度,找到与目标物品相似的物品,再推荐这些相似物品给喜欢目标物品的用户。

二、计算相似度

在协同过滤算法中,需要计算用户或物品之间的相似度。常用的相似度计算方法有:

  • 皮尔逊相关系数(Pearson Correlation Coefficient)
  • 余弦相似度(Cosine Similarity)
  • Jaccard相似度(Jaccard Similarity)

在本文的示例中,我们将使用余弦相似度作为相似度计算方法。

三、Python实现简单的协同过滤推荐系统

def loadExData():
    return[[1,1,1,0,0],
            [2,2,2,0,0],
            [1,1,1,0,0],
            [5,5,5,0,0],
            [1,1,0,2,2],
            [0,0,0,3,3],
            [0,0,0,1,1]]

def loadExData2():
    return[[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
           [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
           [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
           [3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
           [5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
           [0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
           [4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
           [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
           [0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
           [0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
           [1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]]
    
from numpy import * 
from numpy import linalg as la 

#欧氏距离
def euclidSim(inA,inB):
    return 1.0/(1.0+la.norm(inA-inB))

#皮尔逊相关系数  
def pearsSim(inA,inB):

    if len(inA)<3:return 1.0

    return 0.5+0.5*corrcoef(inA,inB,rowvar=0)[0][1]

#余弦相似度
def cosSim(inA,inB):

    num=float(inA.T*inB)
    denom=la.norm(inA)*la.norm(inB)

    return 0.5+0.5*(num/denom)
    
    
#基于物品相似度的推荐引擎(标准相似度计算方法下的用户估计值  )
def standEst(dataMat,user,simMeas,item):

    #商品数目
    n=shape(dataMat)[1]

    #两个用于计算估计评分值的变量
    simTotal=0.0;
    ratSimTotal=0.0

    #遍历所有商品,并将它与所有的物品进行比较
    for j in range(n):

        #用户对某个物品的评分
        userRating=dataMat[user,j]

        if userRating==0:
            continue

        # logical_and:矩阵逐个元素运行逻辑与,返回值为每个元素的True,False  
        # dataMat[:,item].A>0: 第item列中大于0的元素  
        # dataMat[:,j].A: 第j列中大于0的元素  
        # overLap: dataMat[:,item],dataMat[:,j]中同时都大于0的那个元素的行下标(一个向量) 

        overLap=nonzero(logical_and(dataMat[:,item].A>0,\
                                    dataMat[:,j].A>0))[0]

        print(j)
        print("------overLap------")
        print(overLap)

        if len(overLap)==0:
            similarity=0

        # 计算overLap矩阵的相似度
        else: similarity=simMeas(dataMat[overLap,item],\
                        dataMat[overLap,j])

        print("dataMat[overLap,item:")
        print(dataMat[overLap,item])
        print("dataMat[overLap,j:")
        print(dataMat[overLap,j])
        print ('the %d and %d similarity is:%f' % (item,j,similarity))

        # 累计总相似度(不太理解)
#        假设A评分未知,A,B相似度0.9,B评分5,;A C相似度0.8,C评分4.
#        那么按照公式A评分=(0.9*5+0.8*4)/(0.9+0.8)
#       相当于加权平均(如果除以2),但是因为2个评分的权重是不一样的,所以应除以相似度之和

        simTotal+=similarity

        # ratSimTotal = 相似度*元素值 
        ratSimTotal+=similarity*userRating

        print("ratSimTotal+=similarity*userRating:")
        print(ratSimTotal)

    if simTotal==0:
        return 0
    else:
        return ratSimTotal/simTotal

#对某个用户产生最高的N个推荐结果
#user 表示要推荐的用户编号
def recommend(dataMat,user,N=3,simMeas=cosSim,estMethod=standEst):

    #对给定用户建立一个未评分的物品矩阵
    unratedItems=nonzero(dataMat[user,:].A==0)[1] #第user行中等于0的元素 

#    print(dataMat[user,:].A==0)----[[ True  True  True ...,  True False  True]]
#    对于二维数组b2,nonzero(b2)所得到的是一个长度为2的元组。它的第0个元素是数组a中值不为0的元素的第0轴的下标,第1个元素则是第1轴的下标,因此从下面的结果可知b2[0,0]、b[0,2]和b2[1,0]的值不为0:
#
#>>> b2 = np.array([[True, False, True], [True, False, False]])  
#>>> np.nonzero(b2)  
#(array([0, 0, 1], dtype=int64), array([0, 2, 0], dtype=int64))  
   
    if len(unratedItems)==0:
        return 'you rated everything'

    #给未评分物品存放预测得分的列表
    itemScores=[]

    for item in unratedItems:
        #对每个未评分物品通过standEst()方法来预测得分
        print("item------------")
        print(item)

        estimatedScore=estMethod(dataMat,user,simMeas,item)

        #将物品编号和估计得分存放在列表中
        itemScores.append((item,estimatedScore))

    #sorted排序函数,key 是按照关键字排序,lambda是隐函数,固定写法,
    #jj表示待排序元祖,jj[1]按照jj的第二列排序,reverse=True,降序;[:N]前N个
    return sorted(itemScores,key=lambda jj:jj[1],reverse=True)[:N]
    
#利用SVD提高推荐效果
#基于SVD的评分估计
def svdEst(dataMat,user,simMeas,item):

    #商品数目    
    n=shape(dataMat)[1]
    simTotal=0.0;ratSimTotal=0.0

    #SVD分解为:U*S*V
    U,Sigma,VT=la.svd(dataMat)

    #分解后只利用90%能量的奇异值,存放在numpy数组里面
    Sig4=mat(eye(4)*Sigma[:4])

    #利用U矩阵将物品转换到低维空间中
    xformeditems=dataMat.T*U[:,:4]*Sig4.I

    for j in range(n):
        userRating=dataMat[user,j]

        if userRating==0 or j==item:continue
        similarity=simMeas(xformeditems[item,:].T,\
                            xformeditems[j,:].T)
        print ('the %d and %d similarity is :%f' % (item,j,similarity))
        simTotal+=similarity
        ratSimTotal+=similarity*userRating

    if simTotal==0:return 0
    else: return ratSimTotal/simTotal 
    
if __name__ == '__main__':
   myMat=mat(loadExData2())
   print(recommend(myMat,2))

在这里插入图片描述

总结

这段代码主要是通过协同过滤的方式实现一个电影推荐系统。具体流程如下:

  1. 首先,定义了两个函数loadExData()和loadExData2(),它们返回的是用户对电影的评分数据,这些数据被用来作为推荐系统的输入。
  2. 然后,定义了三个函数euclidSim(),pearsSim()和cosSim(),它们分别用于计算欧氏距离、皮尔逊相关系数和余弦相似度。这些相似度计算方法用于计算用户或者物品之间的相似性。
  3. 接下来,定义了两个函数standEst()和svdEst(),它们分别用于基于标准相似度和SVD(奇异值分解)的评分估计。这些评分估计方法用于预测用户对未评分物品的评分。
  4. 然后,定义了一个函数recommend(),它用于对某个用户产生最高的N个推荐结果。这个函数首先找出用户未评分的物品,然后对每个未评分物品通过评分估计方法来预测得分,最后将预测得分最高的N个物品推荐给用户。
  5. 最后,在主函数中,加载了用户对电影的评分数据,然后调用recommend()函数为第2个用户推荐电影。

总的来说,这段代码实现了一个基于协同过滤的电影推荐系统,通过计算用户或者物品之间的相似性,预测用户对未评分物品的评分,然后将预测得分最高的物品推荐给用户。

目录
相关文章
|
25天前
|
大数据 数据处理 数据安全/隐私保护
Python3 迭代器与生成器详解:从入门到实践
简介:本文深入解析Python中处理数据序列的利器——迭代器与生成器。通过通俗语言与实战案例,讲解其核心原理、自定义实现及大数据处理中的高效应用。
67 0
|
6天前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
65 1
|
11天前
|
调度 数据库 Python
Python异步编程入门:asyncio让并发变得更简单
Python异步编程入门:asyncio让并发变得更简单
78 5
|
17天前
|
搜索推荐 算法 关系型数据库
基于python评论分析的商品推荐系统设计
本文介绍了多种开发技术,包括Python集成开发环境PyCharm、自然语言处理工具SnowNLP、关系型数据库MySQL、Python语言特性、Django Web框架以及协同过滤算法。内容涵盖各技术的基本功能、特点及其在实际开发中的应用,适用于初学者和开发者了解相关工具与框架的使用与优势。
|
26天前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
24天前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。
|
24天前
|
数据采集 存储 XML
Python爬虫入门(1)
在互联网时代,数据成为宝贵资源,Python凭借简洁语法和丰富库支持,成为编写网络爬虫的首选。本文介绍Python爬虫基础,涵盖请求发送、内容解析、数据存储等核心环节,并提供环境配置及实战示例,助你快速入门并掌握数据抓取技巧。
|
27天前
|
机器学习/深度学习 搜索推荐 数据可视化
基于python大数据的音乐可视化与推荐系统
本研究基于Python实现音乐数据采集、清洗、分析与可视化,并结合协同过滤算法构建个性化推荐系统。通过Echarts展示音乐热度及用户偏好,提升用户体验,助力音乐产业智能化发展。
|
27天前
|
搜索推荐 算法 大数据
基于python大数据的旅游景点可视化与推荐系统
本系统基于大数据与网络技术,构建个性化旅游推荐平台。通过收集用户偏好及行为数据,结合机器学习算法,提供精准的旅游目的地、住宿及交通推荐,旨在优化旅游信息传递,提升用户决策效率与旅行体验。

热门文章

最新文章

推荐镜像

更多