第11章 数据库的设计规范【2.索引及调优篇】【MySQL高级】2

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 第11章 数据库的设计规范【2.索引及调优篇】【MySQL高级】2

3.3 反范式的新问题

反范式可以通过空间换时间,提升查询的效率,但是反范式也会带来一些新问题:

  • 存储 空间变大
  • 一个表中字段做了修改,另一个表中冗余的字段也需要做同步修改,否则 数据不一致
  • 若采用存储过程来支持数据的更新、删除等额外操作,如果更新频繁,会非常 消耗系统资源
  • 数据量小 的情况下,反范式不能体现性能的优势,可能还会让数据库的设计更加 复杂

3.4 反范式的适用场景

当冗余信息有价值或者能大幅度提高查询效率 的时候,才会采取反范式的优化

1. 增加冗余字段的建议

增加冗余字段一定要符合如下两个条件。只有满足这两个条件,才可以考虑增加冗余字段。

1)这个冗余字段不需耍经常进行修改

2)这个冗余字段查询的时候不可或缺

2. 历史快照、历史数据的需要

在现实生活中,经常需要一些冗余信息,比如订单中的收货人信息,包括姓名、电话和地址等。每次发生的订单收货信息都属于历史快照,需要进行保存,但用户可以随时修改自己的信息,这时保存这些冗余信息是非常有必要的。


反范式优化也常用在数据仓库的设计中,因为数据仓库通常存储历史数据,对增删改的实时性要求不强,对历史数据的分析需求强。这时适当允许数据的冗余度,更方便进行数据分析。


简单总结下数据仓库和数据库在使用上的区别:


1.数据库设计的目的在于捕获数据,而数据仓库设计的目的在于分析数据;

2.数据库对数据的增删改实时性要求强,需要存储在线的用户数据,而数据仓库存储的一般是历史数据;

3.数据库设计需要尽量避免冗余,但为了提高查询效率也允许一定的冗余度,而数据仓库在设计上更偏向采用反范式设计。

4.BCNF(巴斯范式)

人们在3NF的基础上进行了改进,提出了巴斯范式(BCNF),也叫做巴斯-科德范式(Boyce-Codd NormalForm)。BCNF被认为没有新的设计规范加入,只是对第三范式中设计规范要求更强,使得数据库冗余度更小。所以,称为是修正的第三范式,或扩充的第三范式,BCNF不被称为第四范式

若一个关系达到了第三范式,并且它只有一个候选键,或者它的每个候选键都是单属性,则该关系自然达到BC范式。

一般来说,一个数据库设计符合3NF或BCNF就可以了
1. 案例

我们分析如下表的范式情况:


在这个表中,一个仓库只有一个管理员,同时一个管理员也只管理一个仓库。先来梳理下这些属性之间的依赖关系。


仓库名决定了管理员,管理员也决定了仓库名,同时(仓库名,物品名)的属性集合可以决定数量这个属性。这样,我们就可以找到数据表的候选键。


候选键 :是(管理员,物品名)和(仓库名,物品名),然后从候选键中选择一个作为 主键 ,比如(仓库名,物品名)。

主属性 :包含在任一候选键中的属性,也就是仓库名,管理员和物品名。

非主属性 :数量这个属性

2. 是否符合三范式

如何判断一张表的范式呢?需要根据范式的等级,从低到高来进行判断
首先,数据表每个属性都是原子性的,符合 1NF 的要求;

其次,数据表中非主属性”数量“都与候选键全部依赖,(仓库名,物品名)决定数量,(管理员,物品名)决定数量。因此,数据表符合 2NF 的要求;

最后,数据表中的非主属性,不传递依赖于候选键。因此符合 3NF 的要求。

3. 存在的问题

既然数据表已经符合了 3NF 的要求,是不是就不存在问题了呢?来看下面的情况:

  1. 增加一个仓库,但是还没有存放任何物品。根据数据表实体完整性的要求,主键不能有空值,因此会出现 插入异常
  2. 如果仓库更换了管理员,就可能会 修改数据表中的多条记录
  3. 如果仓库里的商品都卖空了,那么此时仓库名称和相应的管理员名称也会随之被删除。
    你能看到,即便数据表符合 3NF 的要求,同样可能存在插入,更新和删除数据的异常情况

4. 问题解决
首先需要确认造成异常的原因:主属性仓库名对于候选键(管理员,物品名)是部分依赖的关系,这样就有可能导致上面的异常情况。因此引入BCNF,它在 3NF 的基础上消除了主属性对候选键的部分依赖或者传递依赖关系
如果在关系R中,U为主键,A属性是主键的一个属性,若存在A->Y,Y为主属性,则该关系不属于BCNF。

根据 BCNF 的要求,需要把仓库管理关系 warehouse_keeper 表拆分成下面这样:


仓库表 :(仓库名,管理员)

库存表 :(仓库名,物品名,数量)

这样就不存在主属性对于候选键的部分依赖或传递依赖,上面数据表的设计就符合 BCNF。


再举例:

有一个 学生导师表,其中包含字段:学生ID,专业,导师,专业GPA,这其中学生ID和专业是联合主键。



这个表的设计满足三范式,但是这里存在另一个依赖关系,“专业”依赖于“导师”,也就是说每个导师只做一个专业方面的导师,只要知道了是哪个导师,自然就知道是哪个专业的了。


所以这个表的部分主键Major依赖于非主键属性Advisor,那么我们可以进行以下的调整,拆分成2个表:


学生导师表:



导师表:



5.第四范式

多值依赖的概念:
多值依赖即属性之间的一对多关系,记为K→→A

函数依赖事实上是单值依赖,所以不能表达属性值之间的一对多关系

平凡的多值依赖∶全集U=K+A,一个K可以对应于多个A,即K→→A。此时整个表就是一组一对多关系

非平凡的多值依赖︰全集U=K+A+B,一个K可以对应于多个A,也可以对应于多个B,A与B互相独立,即K→→A,K→→B。整个表有多组一对多关系,且有:“一"部分是相同的属性集合,“多”"部分是互相独立的属性集合

第四范式即在满足巴斯-科德范式(BCNF)的基础上,消除非平凡且非函数依赖的多值依赖(即把同一表内的多对多关系删除)

举例1:

职工表(职工编号,职工孩子姓名,职工选修课程)。

在这个表中,同一个职工可能会有多个职工孩子姓名。同样,同一个职工也可能会有多个职工选修课程,即这里存在着多值事实,不符合第四范式。


如果要符合第四范式,只需要将上表分为两个表,使它们只有一个多值事实,例如: 职工表一 (职工编号,职工孩子姓名),职工表二 (职工编号,职工选修课程),两个表都只有一个多值事实,所以符合第四范式

举例2:

比如建立课程、教师、教材的模型。我们规定,每门课程有对应的一组教师,每门课程也有对应的一组教材,一门课程使用的教材和教师没有关系。我们建立的关系表如下:

课程ID,教师ID,教材ID;这三列作为联合主键。

为了表述方便,我们用Name代替ID,这样更容易看懂:

这个表除了主键,就没有其他字段了,所以肯定满足BC范式,但是却存在多值依赖导致的异常。


假如下学期想采用一本新的英版高数教材,但是还没确定具体哪个老师来教,那么就无法在这个表中维护Course高数和Book英版高数教材的的关系。


解决办法是把这个多值依赖的表拆解成2个表,分别建立关系。这是拆分后的表:


以及


6. 第五范式、域键范式

除了第四范式外,还有更高级的第五范式(又称完美范式)和域键范式(DKNF)。

在满足第四范式(4NF)的基础上,消除不是由候选键所蕴含的连接依赖。如果关系模式R中的每一个连接依赖均由R的候选键所隐含,则称此关系模式符合第五范式。
函数依赖是多值依赖的一种特殊的情况,而多值依赖实际上是连接依赖的一种特殊情况。但连接依赖不像函数依赖和多值依赖可以由语义直接导出 ,而是在 关系连接运算 时才反映出来。存在连接依赖的关系模式仍可能遇到数据冗余及插入、修改、删除异常等问题。


第五范式处理的是无损连接问题,这个范式基本 没有实际意义 ,因为无损连接很少出现,而且难以察觉。而域键范式试图定义一个终极范式 ,该范式考虑所有的依赖和约束类型,但是实用价值也是最小的,只存在理论研究中。

7. 实战案例

商超进货系统中的进货单表进行剖析:

进货单表:

这个表中的字段很多,表里的数据量也很惊人。大量重复导致表变得庞大,效率极低。如何改造?


在实际工作场景中,这种由于数据表结构设计不合理,而导致的数据重复的现象并不少见。往往是系统虽然能够运行,承载能力却很差,稍微有点流量,就会出现内存不足、CUP使用率飙升的情况,甚至会导致整个项目失败

7.1 迭代1次:考虑1NF

第一范式要求:所有的字段都是基本数据字段,不可进一步拆分。这里需要确认,所有的列中,每个字段只包含—种数据。

这张表里把“property"这一字段,拆分成"specification (规格)“和"unit(单位)”,这2个字段如下:


7.2迭代2次:考虑2NF

第二范式要求,在满足第一范式的基础上,还要满足数据表里的每一条数据记录,都是可唯一标识的。而且所有字段,都必须完全依赖主键,不能只依赖主键的一部分

第1步,就是要确定这个表的主键。通过观察发现,字段““listnumber(单号)”+"barcode(条码)"可以唯一标识每一条记录,可以作为主键。


第2步,确定好了主键以后,判断哪些字段完全依赖主键,哪些字段只依赖于主键的一部分。把只依赖于主键一部分的字段拆分出去,形成新的数据表。


首先,进货单明细表里面的“goodsname(名称)" "specification(规格)“unit(单位)“这些信息是商品的属性,只依赖于“barcode(条码)”,不完全依赖主键,可以拆分出去。把这3个字段加上它们所依赖的字段”“barcode(条码)”,拆分形成一个新的数据表“商品信息表”。

这样一来,原来的数据表就被拆分成了两个表


商品信息表:


进货单表:


此外,字段“supplierid(供应商编号)”“suppliername(供应商名称)”"stock(仓库)“只依赖于"listnumber(单号)”,不完全依赖于主键,所以,可以把"supplierid”“suppliername"stock"这3个字段拆出去,再加上它们依赖的字段"listnumber(单号)””,就形成了一个新的表“进货单头表”。剩下的字段,会组成新的表,我们叫它”进货单明细表”。


原来的数据表就拆分成了3个表


进货单头表:


进货单明细表:


商品信息表:


现在来分析一下拆分后的3个表,保证这3个表都满足第二范式的要求


第3步,在"商品信息表"中,字段"barcode"是有可能存在重复的,比如,用户门店可能有散装称重商品和自产商品,会存在条码共用的情况。所以,所有的字段都不能唯一标识表里的记录。这个时候必须给这个表加上一个主键,比如说是自增字段"itemnumber”。

现在就可以把进货单明细表里面的字段"barcode"都替换成字段"itemnumber",这就得到了新的如下表


进货单明细表:


商品信息表:


拆分后的3个数据表就全部满足了第二范式的要求

7.3迭代3次:考虑3NF

进货单头表还有数据冗余的可能。因为“supplername "依赖"supplierid"那么,这个时候,就可以按照第三范式的原则进行拆分了。进一步拆分一下进货单头表,把它拆解成供货商表和进货单头表。

供货商表:

进货单头表:


这2个表都满足第三范式的要求了

7.4反范式化:业务优先的原则

在进货单明细表中,quantity * importprice = importvalue、“importprice"、“quantity"和"importvalue可以通过任意两个计算出第三个来,这就存在冗余字段。如果严格按照第三范式的要求,应该进行进一步优化。优化的办法是删除其中一个字段,只保留另外2个,这样就没有冗余数据了。


可是,真的可以这样做吗?要回答这个问题就要先了解下实际工作中的业务优先原则。


所谓的业务优先原则,就是指一切以业务需求为主,技术服务于业务。**完全按照理论的设计不一定就是最优,还要根据实际情况来决定。**这里就来分析一下不同选择的利与弊。


对于quantity * importprice =importvalue,看起来"importvalue"似乎是冗余字段,但并不会导致数据不一致,可是,如果把这个字段取消,是会影响业务的。

因为有的时候,供货商会经常进行一些促销活动,按金额促销,那他们拿来的进货单只有金额,没有价格。而”“importprice"反而是通过“importvalue”="quantity"计算出来的,经过四舍五入,会产生较大的误差。这样日积月累,最终会导致查询结果出现较大偏差,影响系统的可靠性。


举例:进货金额(importvalue)是25.5元,数量(quantity)是 34,那么进货价格(importprice)就等于25.5/34=0.74元,但是如果用这个计算出来的进货价格(importprice)来计算进货金额,那么,进货金额(importvalue)就等于0.74x34=25.16元,其中相差了25.5-25.16=0.34元


所以,本着业务优先的原则,在不影响系统可靠性的前提下,可适当增加数据冗余,保留“importvalue"importprice”和“quantity"。


因此,最后我们可以把进货单表拆分成下面的4个表:


进货单明细表:


商品信息表:


供货商表:


进货单头表:


这样一来,我们就避免了冗余,而且还能够满足业务的需求,这样的数据表设计,才是合格的设计。

8. ER模型

数据库设计是牵一发而动全身的。那有没有什么办法提前看到数据库的全貌呢?比如需要哪些数据表、数据表中应该有哪些字段,数据表与数据表之间有什么关系、通过什么字段进行连接,等等。这样才能进行整体的梳理和设计。


其实,ER模型就是一个这样的工具。ER模型也叫作实体关系模型,是用来描述现实生活中客观存在的事物、事物的属性,以及事物之间关系的一种数据模型。在开发基于数据库的信息系统的设计阶段,通常使用ER模型来描述信息需求和信息特性,帮助我们理清业务逻辑,从而设计出优秀的数据库

8.1ER模型包括哪些要素?

ER模型中有三个要素。分别是实体、属性和关系

实体,可以看做是数据对象,往往对应于现实生活中的真实存在的个体。在ER模型中,用矩形来表示。实体分为两类,分别是强实体和弱实体。强实体是指不依赖于其他实体的实体;弱实体是指对另一个实体有很强的依赖关系的实体。


属性, 则是指实体的特性。比如超市的地址、联系电话、员工数等。在ER模型中用椭圆形来表示。


关系, 则是指实体之间的联系。比如超市把商品卖给顾客,就是一种超市与顾客之间的联系。在ER模型中用菱形来表示。

注意:实体和属性不容易区分。这里提供一个原则:要从系统整体的角度出发去看,可以独立存在的是实体,不可再分的是属性。也就是说,属性不能包含其他属性。

8.2关系的类型

在ER模型的3个要素中,关系又可以分为3种类型,分别是一对一、一对多、多对多。
一对一︰指实体之间的关系是一一对应的,比如个人与身份证信息之间的关系就是一对一的关系。一个人只能有一个身份证信息,一个身份证信息也只属于一个人。


一对多∶指一边的实体通过关系,可以对应多个另外一边的实体。相反,另外一边的实体通过这个关系,则只能对应唯一的一边的实体。比如说,新建一个班级表,而每个班级都有多个学生,每个学生则对应一个班级,班级对学生就是一对多的关系。


多对多︰指关系两边的实体都可以通过关系对应多个对方的实体。比如在进货模块中,供货商与超市之间的关系就是多对多的关系,一个供货商可以给多个超市供货,一个超市也可以从多个供货商那里采购商品。再比如一个选课表,有许多科目,每个科目有很多学生选,而每个学生又可以选择多个科目,这就是多对多的关系。

8.3建模分析

ER模型看起来比较麻烦,但是对我们把控项目整体非常重要。如果你只是开发一个小应用,或许简单设计几个表够用了,一旦要设计有一定规模的应用,在项目的初始阶段,建立完整的ER模型就非常关键了。开发应用项目的实质,其实就是建模


此处设计的案例是电商业务,由于电商业务太过庞大且复杂,所以做了业务简化,比如针对SKU(StockKeepingUnit,库存量单位)和SPU(Standard Product Unit,标准化产品单元)的含义上,直接使用了SKU,并没有提及SPU的概念。本次电商业务设计总共有8个实体,如下所示。


地址实体

用户实体

购物车实体

评论实体

商品实体

商品分类实体

订单实体

订单详情实体

其中,用户和商品分类是强实体,因为它们不需要依赖其他任何实体。而其他同于弱实体,因为它们虽然都可以独立存在,但是它们都依赖用户这个实体,因此都是弱实体。知道了这些要素就可以给电商业务创建ER模型了,如图:


在这个图中,地址和用户之间的添加关系,是一对多的关系,而商品和商品详情示一对1的关系,商品和

订单是多对多的关系。 这个 ER 模型,包括了 8个实体之间的 8种关系。

(1)用户可以在电商平台添加多个地址;

(2)用户只能拥有一个购物车;

(3)用户可以生成多个订单;

(4)用户可以发表多条评论;

(5)一件商品可以有多条评论;

(6)每一个商品分类包含多种商品;

(7)一个订单可以包含多个商品,一个商品可以在多个订单里。

(8)订单中又包含多个订单详情,因为一个订单中可能包含不同种类的商品

8.4 ER 模型的细化

有了这个 ER 模型就可以从整体上理解电商的业务了。刚刚的 ER 模型展示了电商业务的框架,但是只包括了订单,地址,用户,购物车,评论,商品,商品分类和订单详情这八个实体,以及它们之间的关系,还不能对应到具体的表,以及表与表之间的关联。需要把属性加上,用椭圆来表示,这样得到的 ER 模型就更加完整了。


因此,我们需要进一步去设计一下这个 ER 模型的各个局部,也就是细化下电商的具体业务流程,然后把它们综合到一起,形成一个完整的 ER 模型。这样可以理清数据库的设计思路。


接下来再分析一下各个实体都有哪些属性,如下所示。


(1) 地址实体 包括用户编号、省、市、地区、收件人、联系电话、是否是默认地址。

(2) 用户实体 包括用户编号、用户名称、昵称、用户密码、手机号、邮箱、头像、用户级别。

(3) 购物车实体 包括购物车编号、用户编号、商品编号、商品数量、图片文件url

(4)订单实体 包括订单编号、收货人、收件人电话、总金额、用户编号、付款方式、送货地址、下单

时间。

(5) 订单详情实体 包括订单详情编号、订单编号、商品名称、商品编号、商品数量。

(6) 商品实体 包括商品编号、价格、商品名称、分类编号、是否销售,规格、颜色。

(7) 评论实体 包括评论id、评论内容、评论时间、用户编号、商品编号

(8) 商品分类实体 包括类别编号、类别名称、父类别编号


这样细分之后就可以重新设计电商业务了,ER 模型如图:



8.5 ER 模型图转换成数据表(代码有待完善)

通过绘制 ER 模型已经理清了业务逻辑,现在就要进行非常重要的一步了:把绘制好的 ER模型,转换成具体的数据表,下面介绍下转换的原则:
(1)一个实体通常转换成一个 数据表 ;

(2)一个 多对多的关系 ,通常也转换成一个 数据表 ;

(3)一个 1 对 1 ,或者 1 对多 的关系,往往通过表的 外键 来表达,而不是设计一个新的数据表;

(4) 属性 转换成表的 字段 。


下面结合前面的ER模型,具体讲解一下怎么运用这些转换的原则,把 ER 模型转换成具体的数据表,从

而把抽象出来的数据模型,落实到具体的数据库设计当中

1.一个实体通常转换成一个数据表;

先来看一下强实体转换成数据表:

用户实体转换成用户表(user_info)的代码如下所示。

CREATE TABLE `user_info`(
  `id` bigint(20)NOT NULL AUTO_INCREMENT COMMENT '编号',
  `user_name` varchar(200)DEFAULT NULL COMMENT '用户名称',
  `nick_name` varchar (200)DEFAULT NULL COMMENT '用户昵称',
  `passwd` varchar (200)DEFAULT NULL COMMENT '用户密码',
  `phone_num` varchar (200) DEFAULT NULL COMMENT '手机号',
  `email` varchar(200) DEFAULT NULL COMMENT '邮箱',
  `head_img` varchar ( 200)DEFAULT NULL COMMENT'头像',
  `user_level` varchar(200) DEFAULT NULL COMMENT '用户级别',
  PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 COMMENT='用户表';

商品分类实体转换成商品分类表 (base_category),由于商品分类可以有一级分类和二级分类,比如一级分类有家居、手机等等分类,二级分类可以根据手机的一级分类分为手机配件,运营商等,这里我们把商品分类实体规划为两张表,分别是一级分类表和二级分类表,之所以这么规划是因为一级分类和二级分类都是有限的,存储为两张表业务结构更加清晰。

#一级分类表
  CREATE TABLE`base_category1`(
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号',
  `name` varchar (10) NOT-NULL COMMENT '分类名称',
  PRIMARY KEY (`id`) USING BTREE
)ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT='一级分类表';
#二级分类表
CREATE TABLE `base_category2`(
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号',
  `name` varchar (208) NOT NULL COMMENT '二级分类名称',
  `category1_id` bigint(20) DEFAULT NULL COMMENT '一级分类编号',
  PRIMARY KEY (`id`) USING BTREE
)ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT='二级分类表';

那么如果规划为—张表呢,表结构如下所示。

CREATE TABLE `base_category`(
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号',
  `name` varchar (200)NOT NULL COMMENT '分类名不',
  `category_parent_id` bigint(20) DEFAULT NULL COMMENT '父分类编号',
  PRIMARY KEY ( id  ) USING BTREE
)ENGINE=InnoDB AUTO_INCRENENT=1 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT= '分类表';

如果这样分类的话,那么查询一级分类时候,就需要判断父分类编号是否为空,但是如果插入二级分类的时候也是空,就容易造成业务数据混乱。而且查询二级分类的时候IS NOT NULL条件是无法使用到索引的。同时,这样的设计也不符合第二范式(因为父分类编号并不依赖分类编号ID,因为父分类编号可以有很多数据为NULL),所以需要进行表的拆分。因此无论是业务需求还是数据库表的规范来看都应该拆分为两张表。

下面我们再把弱实体转换成数据表:

地址实体转换成地址表(user_address) ,如下所示。

CREATE TABLE `user_address`(
`id` bigint(20)NOT NULL AUTO_INCREMENT COMMENT '编号',
'province' varchar (500)DEFAULT NULL COMMENT'省',
`city` varchar (500) DEFAULT NULL COMMENT '市',
`user_address` varchar (500) DEFAULT NULL COMMENT '具体地址',
`user_id bipint(20)` DEFAULT NULL COMMENT '用户id',
`consignee` varchar( 40) DEFAULT NULL COMMENT '收件人',
`phone_num ` varchar(40) DEFAULT NULL COMMENT ‘联系方式',
`is_default` varchar( 1) DEFAULT NULL COMMENT '是否是默认',
PRIMARY KEY (`id`)
)ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='用户地址表';

订单实体转换成订单表(order_info),如下所示,实际业务中订单的信息会非常多,我们这里做了简化。

CREATE TABLE `order_info`(
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号',
  `consignee` varchar (100) DEFAULT NULL COMMENT '收货人',
  `consignee_tel` varchar(20) DEFAULT NULL COMMENT'收件人电话',
  `total_amount` decimal( 10,2)DEFAULT NULL COMMENT '总金额',
  `user_id` bigint(20) DEFAULT NULL COMMENT'用户id',
  `payment_way` varchar(20)DEFAULT NULL COMMENT'付款方式',
  `delivery_address` varchar( 1000) DEFAULT NULL COMMENT'送货地址',
  `create_time` datetime DEFAULT NULL COMMENT'下单时间',
  PRIMARY KEY (`id`) USING BTREE
)ENGINE=InnoDB AUTO_INCRENENT=1 DEFAULT CHARSET=utf8 ROW_FORNAT=DYNAMIC COMMENT= '订单表';

订单详情实体转换成订单详情表(order_detail),如下所示。(用于体现多对多关系的,见下节)

#订单详情表
CREATE TABLE `order_detail`(
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '订单详情编号',
  `order_id` bigint(20) DEFAULT NULL COMMENT '订单编号',
  `sku_id` bigint(20)DEFAULT NULL COMMENT 'sku_id',
  `sku_name` varchar(200) DEFAULT NULL COMMENT 'sku名称',
  `sku_num` varchar(200) DEFAULT NULL COMMENT '购买个数',
  `create_time` datetime DEFAULT NULL COMMENT'操作时间',
  PRIMARY KEY (`id`) USING BTREE
)ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT='订单明细表';

购物车实体转换成购物车表(cart_info),如下所示。

CREATE TABLE `cart_info`(
  `cart_id` bigint(20)NOT NULL AUTO_INCREMENT COMMENT'编号',
  `user_id` varchar(200) DEFAULT NULL COMMENT'用户id',
  `sku_id` bigint(20)DEFAULT NULL COMMENT 'skuid' ,
  `sku_num` int( 11)DEFAULT NULL COMMENT '数量',
  `img_url` varchar ( 500) DEFAULT NULL COMMENT '图片文件',
  PRIMARY KEY (`id`) USING BTREE
)ENGINE=InnoDB AUTO_INCRENENT=1 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT='购物车表';

评论实体转换成评论表(members),如下所示。

CREATE TABLE `sku_comments`(
  `comment_id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT'评论编号',
  `user_id` bigin)t (20) DEFAULT NULL COMMENT'用户编号',
  `sku_id` decimal( 10,0) DEFAULT NULI COMMENT '商品编号',
  `comment` varchar(2000)DEFAULT NULL COMMENT '评论内容',
  `create_time` datetime DEFAULT NULL COMMENT '评论时间',
  PRIMARY KEY (`id`) USING BTREE
)ENGINE=InnoDB AUTO_INCRENENT=45 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMNENT='商品评论表';

商品实体转换成商品表(members),如下所示。

CREATE TABLE `sku_info`(
  `sku_id` bigint(20) NOT NULL AUTO_INCREMENT COPMENT'商品编号(itemID)',
   `price` decimal(10,0) DEFAULT NULL COMMENT'价格',
  `sku_name` varchar(200) DEFAULT NULL COMMENT 'sku名称',
  `sku_desc` varchar(2000) DEFAULT NULL COMMENT'商品规格描述',
  `category3_id` bigint(20) DEFAULT NULL COMMENT'三级分类id(冗余)',
  `color` varchar (2000) DEFAULT NULL COMMENT '颜色',
  `is_sale` tinyint(3) NOT NULL DEFAULT '0' CONMMENT'是否销售(1:是0:否)',
  PRIMARY KEY (`id`) USING BTREE
)ENGINE=InnoDB AUTO_INCRENENT=45 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT= '商品表';
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
10天前
|
数据库 索引
深入探索数据库索引技术:回表与索引下推解析
【10月更文挑战第15天】在数据库查询优化的领域中,回表和索引下推是两个核心概念,它们对于提高查询性能至关重要。本文将详细解释这两个术语,并探讨它们在数据库操作中的作用和影响。
34 3
|
10天前
|
数据库 索引
深入理解数据库索引技术:回表与索引下推详解
【10月更文挑战第23天】 在数据库查询性能优化中,索引的使用是提升查询效率的关键。然而,并非所有的索引都能直接加速查询。本文将深入探讨两个重要的数据库索引技术:回表和索引下推,解释它们的概念、工作原理以及对性能的影响。
27 3
|
15天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
8天前
|
SQL 关系型数据库 数据库
PostgreSQL性能飙升的秘密:这几个调优技巧让你的数据库查询速度翻倍!
【10月更文挑战第25天】本文介绍了几种有效提升 PostgreSQL 数据库查询效率的方法,包括索引优化、查询优化、配置优化和硬件优化。通过合理设计索引、编写高效 SQL 查询、调整配置参数和选择合适硬件,可以显著提高数据库性能。
45 1
|
6天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
37 0
|
7天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
34 0
|
SQL Java 数据库连接
MySQL---数据库从入门走向大神系列(十五)-Apache的DBUtils框架使用
MySQL---数据库从入门走向大神系列(十五)-Apache的DBUtils框架使用
188 0
MySQL---数据库从入门走向大神系列(十五)-Apache的DBUtils框架使用
|
SQL 关系型数据库 MySQL
MySQL---数据库从入门走向大神系列(六)-事务处理与事务隔离(锁机制)
MySQL---数据库从入门走向大神系列(六)-事务处理与事务隔离(锁机制)
139 0
MySQL---数据库从入门走向大神系列(六)-事务处理与事务隔离(锁机制)
|
存储 SQL 关系型数据库
MySQL---数据库从入门走向大神系列(五)-存储过程
MySQL---数据库从入门走向大神系列(五)-存储过程
138 0
MySQL---数据库从入门走向大神系列(五)-存储过程
|
数据库
MySQL---数据库从入门走向大神系列(四)-子查询、表与表之间的关系(3)
MySQL---数据库从入门走向大神系列(四)-子查询、表与表之间的关系
200 0
MySQL---数据库从入门走向大神系列(四)-子查询、表与表之间的关系(3)