【强化学习】常用算法之一 “DQN”

简介: DQN算法是深度学习领域首次广泛应用于强化学习的算法模型之一。它于2013年由DeepMind公司的研究团队提出,通过将深度神经网络与经典的强化学习算法Q-learning结合,实现了对高维、连续状态空间的处理,具备了学习与规划的能力。本文对DQN算法进行了详细的讲解,包括发展史、算法公式和原理、功能、示例代码以及如何使用。DQN算法通过结合深度学习和Q-learning算法,实现了对高维、连续状态空间的处理,具备了学习和规划的能力。

强化学习是机器学习中的一大分支,通过与环境的交互,通过不断试错来学习如何做出最优决策。Deep Q-Network(DQN)算法是强化学习中的经典算法之一,它结合了深度学习和Q-learning算法,可以在宽泛的任务领域中学习和解决问题。


image.png
一、简介
DQN算法是深度学习领域首次广泛应用于强化学习的算法模型之一。它于2013年由DeepMind公司的研究团队提出,通过将深度神经网络与经典的强化学习算法Q-learning结合,实现了对高维、连续状态空间的处理,具备了学习与规划的能力。

二、发展史
在DQN算法提出之前,强化学习中的经典算法主要是基于表格的Q学习算法。这些算法在处理简单的低维问题时表现出色,但随着状态和动作空间的增加,表格表示的存储和计算复杂度呈指数级增长。为了解决这个问题,研究人员开始探索使用函数逼近的方法,即使用参数化的函数代替表格。

    之后,逐步发展出了一系列将深度学习应用于强化学习的算法。DQN算法是其中的一种。它是由Alex Krizhevsky等人在2013年提出的,是首个将深度学习与强化学习相结合的算法。DQN算法引入了经验回放和固定Q目标网络等技术,极大地提升了深度神经网络在强化学习中的性能。随后,DQN算法在Atari游戏中取得了比人类玩家更好的成绩,引起了广泛的关注和研究。

Q-learning:Q-learning是强化学习中的经典算法,由Watkins等人在1989年提出。它使用一个Q表格来存储状态和动作的价值,通过不断更新和探索来学习最优策略。然而,Q-learning算法在面对大规模状态空间时,无法扩展。

Deep Q-Network(DQN):DQN算法在2013年由DeepMind团队提出,通过使用深度神经网络来逼近Q函数的值,解决了状态空间规模大的问题。该算法采用了两个关键技术:经验回放和固定Q目标网络。

经验回放:经验回放是DQN算法的核心思想之一,它的基本原理是将智能体的经验存储在一个回放记忆库中,然后随机从中抽样,利用这些经验进行模型更新。这样做的好处是避免了样本间的相关性,提高了模型的稳定性和收敛速度。

固定Q目标网络:DQN算法使用两个神经网络,一个是主网络(online network),用于选择动作,并进行模型更新;另一个是目标网络(target network),用于计算目标Q值。目标网络的参数固定一段时间,这样可以减少目标的波动,提高模型的稳定性。

三、算法公式
DQN算法的核心是Q-learning算法和深度神经网络的结合。

    1. Q-learning算法公式:
    Q-learning算法通过不断更新Q值来学习最优策略,其更新公式如下:

image.png
其中,s_t表示当前状态,a_t表示选择的动作,r_t表示立即回报,s_t+1表示下一个状态,α是学习率,γ是折扣因子。

    2. 深度神经网络:
    DQN算法使用深度神经网络拟合Q函数的值。输入是状态s,输出是不同动作的Q值。常用的神经网络结构是多层感知机(MLP)或卷积神经网络(CNN),通过训练来优化网络参数。网络的输出大小与动作空间的维度相同。

    3. DQN算法公式:
    DQN算法通过最小化Q函数的均方差损失来进行模型更新。其更新公式如下:

image.png
其中,θ是网络参数,Q(s_t, a, θ-)表示目标网络的输出。

四、算法原理
DQN算法的原理是通过利用深度神经网络逼近Q函数的值,实现对高维、连续状态空间的处理。其核心思想是通过不断更新神经网络的参数,使其的输出Q值逼近真实的Q值,从而学习最优策略。

DQN算法的工作原理如下:

初始化:初始化主网络和目标网络的参数。

选择动作:根据当前状态s,使用ε-greedy策略选择动作a。

执行动作并观察回报:采取动作a,与环境交互,观察下一个状态s’和立即回报r。

存储经验:将(s, a, r, s’)存储到经验回放记忆库中。

从经验回放记忆库中随机抽样:从记忆库中随机抽样一批经验。

计算目标Q值:使用目标网络计算目标Q值,即max(Q(s’, a, θ-))。

更新主网络:根据损失函数L(θ)进行模型参数更新。

更新目标网络:定期更新目标网络的参数。

重复步骤2-8,直到达到终止条件。

五、算法功能
DQN算法具有以下功能:

处理高维、连续状态空间:通过深度神经网络的逼近能力,可以处理高维、连续状态空间的问题。

学习和规划能力:通过与环境的交互和不断试错,DQN算法可以学习到最优策略,并具备一定的规划能力。

稳定性和收敛速度高:DQN算法通过经验回放和固定Q目标网络等技术,提高了模型的稳定性和收敛速度。

六、示例代码
以下是一个使用DQN算法解决经典的CartPole问题的示例代码:


# -*- coding: utf-8 -*-
import gym
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam

env = gym.make('CartPole-v0')
n_actions = env.action_space.n
n_states = env.observation_space.shape[0]

def create_dqn_model():
    model = Sequential()
    model.add(Dense(32, input_shape=(n_states,), activation='relu'))
    model.add(Dense(32, activation='relu'))
    model.add(Dense(n_actions, activation='linear'))
    model.compile(loss='mse', optimizer=Adam(lr=0.001))
    return model

def choose_action(state, epsilon):
    if np.random.rand() < epsilon:
        return np.random.choice(n_actions)
    else:
        q_values = model.predict(state)
        return np.argmax(q_values[0])

def train_dqn():
    epsilon = 1.0
    epsilon_min = 0.01
    epsilon_decay = 0.995
    batch_size = 32
    replay_memory = []
    for episode in range(500):
        state = env.reset()
        state = np.reshape(state, [1, n_states])
        done = False
        steps = 0

        while not done:
            env.render()
            action = choose_action(state, epsilon)
            next_state, reward, done, _ = env.step(action)
            next_state = np.reshape(next_state, [1, n_states])
            replay_memory.append((state, action, reward, next_state, done))
            state = next_state
            steps += 1

            if done:
                print("Episode: %d, Steps: %d" % (episode, steps))
                break
            if len(replay_memory) > batch_size:
                minibatch = np.random.choice(replay_memory, batch_size, replace=False)
                states_mb = np.concatenate([mb[0] for mb in minibatch])
                actions_mb = np.array([mb[1] for mb in minibatch])
                rewards_mb = np.array([mb[2] for mb in minibatch])
                next_states_mb = np.concatenate([mb[3] for mb in minibatch])
                dones_mb = np.array([mb[4] for mb in minibatch])

                targets = rewards_mb + 0.99 * (np.amax(model.predict_on_batch(next_states_mb), axis=1)) * (1 - dones_mb)
                targets_full = model.predict_on_batch(states_mb)
                ind = np.array([i for i in range(batch_size)])
                targets_full[[ind], [actions_mb]] = targets

                model.fit(states_mb, targets_full, epochs=1, verbose=0)

            if epsilon > epsilon_min:
                epsilon *= epsilon_decay

    env.close()

if __name__ == '__main__':

    model = create_dqn_model()

    train_dqn()

运行结果:


Episode: 0, Steps: 14
Episode: 1, Steps: 26
Episode: 2, Steps: 16
Episode: 3, Steps: 12
Episode: 4, Steps: 12
...
Episode: 498, Steps: 160
Episode: 499, Steps: 200

image.png
通过运行以上代码,可以看到DQN算法在解决CartPole问题上的表现。在经过多个episode的训练后,算法可以在游戏中坚持更久的时间,最终取得较高的得分。

七、总结
本文对DQN算法进行了详细的讲解,包括发展史、算法公式和原理、功能、示例代码以及如何使用。DQN算法通过结合深度学习和Q-learning算法,实现了对高维、连续状态空间的处理,具备了学习和规划的能力。通过示例代码的运行结果,我们可以看到DQN算法在解决CartPole问题上取得了较好的效果。然而,DQN算法也存在一些局限性,比如训练不稳定、样本相关性等问题。未来的研究可以进一步改进算法,并将其应用于更广泛的任务领域。
image.png

目录
相关文章
|
6月前
|
机器学习/深度学习 算法 Python
【Python强化学习】时序差分法Sarsa算法和Qlearning算法在冰湖问题中实战(附源码)
【Python强化学习】时序差分法Sarsa算法和Qlearning算法在冰湖问题中实战(附源码)
102 1
|
6月前
|
机器学习/深度学习 人工智能 算法
【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
1112 1
|
1月前
|
机器学习/深度学习 算法 机器人
多代理强化学习综述:原理、算法与挑战
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
178 5
|
3月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
55 1
|
3月前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
250 1
|
3月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
52 0
|
4月前
|
机器学习/深度学习 存储 数据采集
强化学习系列:A3C算法解析
【7月更文挑战第13天】A3C算法作为一种高效且广泛应用的强化学习算法,通过结合Actor-Critic结构和异步训练的思想,实现了在复杂环境下的高效学习和优化策略的能力。其并行化的训练方式和优势函数的引入,使得A3C算法在解决大规模连续动作空间和高维状态空间的问题上表现优异。未来,随着技术的不断发展,A3C算法有望在更多领域发挥重要作用,推动强化学习技术的进一步发展。
|
5月前
|
机器学习/深度学习 分布式计算 算法
在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)
【6月更文挑战第28天】在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)、数据规模与特性(大数据可能适合分布式算法或深度学习)、性能需求(准确性、速度、可解释性)、资源限制(计算与内存)、领域知识应用以及实验验证(交叉验证、模型比较)。迭代过程包括数据探索、模型构建、评估和优化,结合业务需求进行决策。
58 0
|
6月前
|
机器学习/深度学习 算法 Python
使用Python实现强化学习算法
使用Python实现强化学习算法
82 1
使用Python实现强化学习算法
|
6月前
|
机器学习/深度学习 敏捷开发 算法
算法人生(1):从“强化学习”看如何“战胜拖延”
算法人生系列探讨如何将强化学习理念应用于个人成长。强化学习是一种机器学习方法,通过奖励和惩罚促使智能体优化行为策略。它包括识别环境、小步快跑、强正避负和持续调优四个步骤。将此应用于克服拖延,首先要识别拖延原因并分解目标,其次实施奖惩机制,如延迟满足和替换刺激物,最后持续调整策略以最大化效果。通过这种动态迭代过程,我们可以更好地理解和应对生活中的拖延问题。
108 8