Darknet53详细原理(含torch版源码)

简介: Darknet53详细原理(含torch版源码)—— cifar10

Darknet53原理
Darknet53是一个卷积神经网络模型,在2018年由Joseph Redmon在论文"YOLOv3: An Incremental Improvement"中提出,用于目标检测和分类任务。它是YOLOv3的核心网络模型,其设计思路是通过堆叠多个卷积和残差连接层来提高特征提取的效果。

    Darknet53包含53个卷积层和5个max-pooling层组成。Darknet53的结构可以被划分为三组:前段主要由卷积层和max-pooling层组成,中段主要由残差块组成,后段主要由全局平均池化层和全连接层组成。

    具体来说,前段的7个卷积层每层都是卷积核大小为3x3,步长为1x1的卷积,接着是5个max-pooling层。这部分的目的是将图像的空间信息不断缩小并增加深度。

    接下来是中段的残差块,由于YOLOv3的作者发现,在上述设计下,YOLOv3的学习非常的慢,于是便提出了一种名为"残差块(Residual Block)"的结构。残差块类似于一个短路,它可以让神经网络学习到“残差”,即当前输入和期望输出之间的差异。它使用残差结构来加速收敛、减少梯度消失的问题,以及提高精度。这种结构使得网络能够更好地学习输入图像中的特征,并且增强了模型的表达能力。网络框架图如下:

image.png
image.png
Darknet53的输入为416x416像素大小的RGB图像,经过一系列卷积操作后,输出为13x13x1024的张量。这个张量可以传递给YOLOv3中的检测头,用于检测图像中的物体。

Darknet53网络框架的特点包括:

模型较浅:相比其他深度神经网络框架,Darknet53只有53层,因此训练速度快,性能高。

网络深度可扩展:使用残差结构,可以轻松地增加更多的卷积层来提高网络的性能。

参数量小:Darknet53的参数量比其他网络少很多,尤其是与ResNet等模型相比,这使得模型更快,更容易训练和优化。

高效推理:Darknet53使用低精度计算和并行计算技术,使得模型的推理速度很快,并且可以在低功耗设备上执行。

适用于大量类别的物体分类:Darknet53的优势在于学习图像特征,并可以高效地解决大量类别的物体分类问题。

    总的来说,Darknet53是一个非常有效的卷积神经网络,具有较高的准确性和效率,成为了现代计算机视觉任务中广泛使用的骨干网络之一,并且它已被广泛应用于计算机视觉领域的各种任务,包括图像分类、目标检测、人脸识别等。

Darknet53源码(torch版)
数据集运行代码时自动下载,如果网络比较慢,可以自行点击我分享的链接下载cifar数据集。

链接:https://pan.baidu.com/s/1kfF4WxfpXr4a-GnEugh3AA#list/path=%2F
提取码:kd9a

此代码是使用的GPU运行的,如果没有GPU导致运行失败,就把代码中的device、.to(device)删除,使用默认CPU运行。

如果GPU显存小导致运行报错,就将主函数main()里面的batch_size调小即可。


import torch
import torch.nn as nn
from torch.nn import modules
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from torch.autograd import Variable


class ConvBnLeaky(modules.Module):
    def __init__(self,in_it,out_it,kernels,padding = 0,strides = 1):
        super(ConvBnLeaky, self).__init__()
        self.convs = nn.Sequential(
            nn.Conv2d(in_it,out_it,kernels,padding=padding,stride=strides),
            nn.BatchNorm2d(out_it),
            nn.LeakyReLU(0.1,True)
        )
    def forward(self,x):
        x = self.convs(x)
        return x
    pass
class Resnet_Block(modules.Module):
    def __init__(self,ch,num_block = 1):
        super(Resnet_Block, self).__init__()
        self.module_list = modules.ModuleList()
        for _ in range(num_block):
            resblock = nn.Sequential(
                ConvBnLeaky(ch,ch // 2,1),
                ConvBnLeaky(ch // 2,ch,kernels=3,padding=1)
            )
            self.module_list.append(resblock)
    def forward(self,x):
        for i in self.module_list:
            x = i(x) + x
        return x

class Darknet_53(modules.Module):
    def __init__(self,num_classes = 10):
        super(Darknet_53, self).__init__()
        self.later_1 = nn.Sequential(
            ConvBnLeaky(3,32,3,padding=1),
            ConvBnLeaky(32,64,3,padding=1,strides=2),
            Resnet_Block(64,1)
        )
        self.later_2 = nn.Sequential(
            ConvBnLeaky(64, 128, 3, padding=1,strides=2),
            Resnet_Block(128, 2)
        )
        self.later_3 = nn.Sequential(
            ConvBnLeaky(128, 256, 3, padding=1, strides=2),
            Resnet_Block(256, 8)
        )
        self.later_4 = nn.Sequential(
            ConvBnLeaky(256, 512, 3, padding=1, strides=2),
            Resnet_Block(512, 8)
        )
        self.later_5 = nn.Sequential(
            ConvBnLeaky(512, 1024, 3, padding=1, strides=2),
            Resnet_Block(1024, 4)
        )
        self.pool = nn.AdaptiveAvgPool2d((1,1))
        self.fc = nn.Linear(1024,num_classes)
    def forward(self,x):
        x = self.later_1(x)
        x = self.later_2(x)
        x = self.later_3(x)
        x = self.later_4(x)
        x = self.later_5(x)
        x = self.pool(x)
        x = torch.squeeze(x)
        x = self.fc(x)
        return x


def main():
    Root_file = 'cifar'
    train_data = CIFAR10(Root_file,train=True,transform = transforms.ToTensor())
    data = DataLoader(train_data,batch_size=64,shuffle=True)

    device = torch.device('cuda')
    net = Darknet_53().to(device)
    print(net)
    Cross = nn.CrossEntropyLoss().to(device)
    optimizer = torch.optim.Adam(net.parameters(),0.001)
    for epoch in range(10):
        for img,label in data:
            img = Variable(img).to(device)
            label = Variable(label).to(device)
            output = net.forward(img)
            loss = Cross(output,label)
            loss.backward()
            optimizer.zero_grad()
            optimizer.step()
            pre = torch.argmax(output,1)
            num = (pre == label).sum().item()
            acc = num / img.shape[0]
            loss_val = loss.item()
        print("epoch:",epoch)
        print("acc:",acc)
        print("loss:",loss_val)
    pass


if __name__ == '__main__':
    main()

训练10个epoch的效果
效果图

image.png
框架图

Darknet_53(
  (later_1): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (2): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (later_2): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (1): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (later_3): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (1): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (2): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (3): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (4): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (5): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (6): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (7): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (later_4): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (1): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (2): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (3): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (4): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (5): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (6): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (7): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (later_5): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (1): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (2): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (3): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (pool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=1024, out_features=10, bias=True)
)
目录
相关文章
|
1月前
|
PyTorch 算法框架/工具
Pytorch学习笔记(四):nn.MaxPool2d()函数详解
这篇博客文章详细介绍了PyTorch中的nn.MaxPool2d()函数,包括其语法格式、参数解释和具体代码示例,旨在指导读者理解和使用这个二维最大池化函数。
121 0
Pytorch学习笔记(四):nn.MaxPool2d()函数详解
|
1月前
|
PyTorch 算法框架/工具
Pytorch学习笔记(三):nn.BatchNorm2d()函数详解
本文介绍了PyTorch中的BatchNorm2d模块,它用于卷积层后的数据归一化处理,以稳定网络性能,并讨论了其参数如num_features、eps和momentum,以及affine参数对权重和偏置的影响。
152 0
Pytorch学习笔记(三):nn.BatchNorm2d()函数详解
|
3月前
|
机器学习/深度学习 存储 PyTorch
【深度学习】Pytorch面试题:什么是 PyTorch?PyTorch 的基本要素是什么?Conv1d、Conv2d 和 Conv3d 有什么区别?
关于PyTorch面试题的总结,包括PyTorch的定义、基本要素、张量概念、抽象级别、张量与矩阵的区别、不同损失函数的作用以及Conv1d、Conv2d和Conv3d的区别和反向传播的解释。
242 2
|
机器学习/深度学习 编解码
MobileNetV1详细原理(含torch源码)
MobilenetV1(含torch源码)—— cifar10
367 0
MobileNetV1详细原理(含torch源码)
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
详解Batch Normalization并基于PyTorch实操(附代码)
详解Batch Normalization并基于PyTorch实操(附代码)
168 2
|
机器学习/深度学习 计算机视觉 异构计算
MobileNetV2详细原理(含torch源码)
MobileNetV2详细原理(含torch源码)—— cifar10
485 0
MobileNetV2详细原理(含torch源码)
|
机器学习/深度学习 存储 编解码
MobileNetV3详细原理(含torch源码)
MobilneNetV3详细原理(含torch源码)—— cifar10
739 0
MobileNetV3详细原理(含torch源码)
|
机器学习/深度学习 算法 TensorFlow
Darknet19详细原理(含tensorflow版源码)
Darknet19详细原理(含tensorflow版源码)—— 猫狗分类
202 0
Darknet19详细原理(含tensorflow版源码)
|
机器学习/深度学习 TensorFlow 算法框架/工具
VGG16详细原理(含tensorflow版源码)
VGG16详细原理(含tensorflow版源码)
1056 0
VGG16详细原理(含tensorflow版源码)
|
机器学习/深度学习 算法 TensorFlow
LeNet5详细原理(含tensorflow版源码)
LeNet5详细原理(含tensorflow版源码)
203 0
LeNet5详细原理(含tensorflow版源码)