Darknet53详细原理(含torch版源码)

简介: Darknet53详细原理(含torch版源码)—— cifar10

Darknet53原理
Darknet53是一个卷积神经网络模型,在2018年由Joseph Redmon在论文"YOLOv3: An Incremental Improvement"中提出,用于目标检测和分类任务。它是YOLOv3的核心网络模型,其设计思路是通过堆叠多个卷积和残差连接层来提高特征提取的效果。

    Darknet53包含53个卷积层和5个max-pooling层组成。Darknet53的结构可以被划分为三组:前段主要由卷积层和max-pooling层组成,中段主要由残差块组成,后段主要由全局平均池化层和全连接层组成。

    具体来说,前段的7个卷积层每层都是卷积核大小为3x3,步长为1x1的卷积,接着是5个max-pooling层。这部分的目的是将图像的空间信息不断缩小并增加深度。

    接下来是中段的残差块,由于YOLOv3的作者发现,在上述设计下,YOLOv3的学习非常的慢,于是便提出了一种名为"残差块(Residual Block)"的结构。残差块类似于一个短路,它可以让神经网络学习到“残差”,即当前输入和期望输出之间的差异。它使用残差结构来加速收敛、减少梯度消失的问题,以及提高精度。这种结构使得网络能够更好地学习输入图像中的特征,并且增强了模型的表达能力。网络框架图如下:

image.png
image.png
Darknet53的输入为416x416像素大小的RGB图像,经过一系列卷积操作后,输出为13x13x1024的张量。这个张量可以传递给YOLOv3中的检测头,用于检测图像中的物体。

Darknet53网络框架的特点包括:

模型较浅:相比其他深度神经网络框架,Darknet53只有53层,因此训练速度快,性能高。

网络深度可扩展:使用残差结构,可以轻松地增加更多的卷积层来提高网络的性能。

参数量小:Darknet53的参数量比其他网络少很多,尤其是与ResNet等模型相比,这使得模型更快,更容易训练和优化。

高效推理:Darknet53使用低精度计算和并行计算技术,使得模型的推理速度很快,并且可以在低功耗设备上执行。

适用于大量类别的物体分类:Darknet53的优势在于学习图像特征,并可以高效地解决大量类别的物体分类问题。

    总的来说,Darknet53是一个非常有效的卷积神经网络,具有较高的准确性和效率,成为了现代计算机视觉任务中广泛使用的骨干网络之一,并且它已被广泛应用于计算机视觉领域的各种任务,包括图像分类、目标检测、人脸识别等。

Darknet53源码(torch版)
数据集运行代码时自动下载,如果网络比较慢,可以自行点击我分享的链接下载cifar数据集。

链接:https://pan.baidu.com/s/1kfF4WxfpXr4a-GnEugh3AA#list/path=%2F
提取码:kd9a

此代码是使用的GPU运行的,如果没有GPU导致运行失败,就把代码中的device、.to(device)删除,使用默认CPU运行。

如果GPU显存小导致运行报错,就将主函数main()里面的batch_size调小即可。


import torch
import torch.nn as nn
from torch.nn import modules
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from torch.autograd import Variable


class ConvBnLeaky(modules.Module):
    def __init__(self,in_it,out_it,kernels,padding = 0,strides = 1):
        super(ConvBnLeaky, self).__init__()
        self.convs = nn.Sequential(
            nn.Conv2d(in_it,out_it,kernels,padding=padding,stride=strides),
            nn.BatchNorm2d(out_it),
            nn.LeakyReLU(0.1,True)
        )
    def forward(self,x):
        x = self.convs(x)
        return x
    pass
class Resnet_Block(modules.Module):
    def __init__(self,ch,num_block = 1):
        super(Resnet_Block, self).__init__()
        self.module_list = modules.ModuleList()
        for _ in range(num_block):
            resblock = nn.Sequential(
                ConvBnLeaky(ch,ch // 2,1),
                ConvBnLeaky(ch // 2,ch,kernels=3,padding=1)
            )
            self.module_list.append(resblock)
    def forward(self,x):
        for i in self.module_list:
            x = i(x) + x
        return x

class Darknet_53(modules.Module):
    def __init__(self,num_classes = 10):
        super(Darknet_53, self).__init__()
        self.later_1 = nn.Sequential(
            ConvBnLeaky(3,32,3,padding=1),
            ConvBnLeaky(32,64,3,padding=1,strides=2),
            Resnet_Block(64,1)
        )
        self.later_2 = nn.Sequential(
            ConvBnLeaky(64, 128, 3, padding=1,strides=2),
            Resnet_Block(128, 2)
        )
        self.later_3 = nn.Sequential(
            ConvBnLeaky(128, 256, 3, padding=1, strides=2),
            Resnet_Block(256, 8)
        )
        self.later_4 = nn.Sequential(
            ConvBnLeaky(256, 512, 3, padding=1, strides=2),
            Resnet_Block(512, 8)
        )
        self.later_5 = nn.Sequential(
            ConvBnLeaky(512, 1024, 3, padding=1, strides=2),
            Resnet_Block(1024, 4)
        )
        self.pool = nn.AdaptiveAvgPool2d((1,1))
        self.fc = nn.Linear(1024,num_classes)
    def forward(self,x):
        x = self.later_1(x)
        x = self.later_2(x)
        x = self.later_3(x)
        x = self.later_4(x)
        x = self.later_5(x)
        x = self.pool(x)
        x = torch.squeeze(x)
        x = self.fc(x)
        return x


def main():
    Root_file = 'cifar'
    train_data = CIFAR10(Root_file,train=True,transform = transforms.ToTensor())
    data = DataLoader(train_data,batch_size=64,shuffle=True)

    device = torch.device('cuda')
    net = Darknet_53().to(device)
    print(net)
    Cross = nn.CrossEntropyLoss().to(device)
    optimizer = torch.optim.Adam(net.parameters(),0.001)
    for epoch in range(10):
        for img,label in data:
            img = Variable(img).to(device)
            label = Variable(label).to(device)
            output = net.forward(img)
            loss = Cross(output,label)
            loss.backward()
            optimizer.zero_grad()
            optimizer.step()
            pre = torch.argmax(output,1)
            num = (pre == label).sum().item()
            acc = num / img.shape[0]
            loss_val = loss.item()
        print("epoch:",epoch)
        print("acc:",acc)
        print("loss:",loss_val)
    pass


if __name__ == '__main__':
    main()

训练10个epoch的效果
效果图

image.png
框架图

Darknet_53(
  (later_1): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (2): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (later_2): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (1): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (later_3): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (1): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (2): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (3): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (4): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (5): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (6): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (7): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (later_4): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (1): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (2): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (3): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (4): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (5): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (6): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (7): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (later_5): Sequential(
    (0): ConvBnLeaky(
      (convs): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.1, inplace=True)
      )
    )
    (1): Resnet_Block(
      (module_list): ModuleList(
        (0): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (1): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (2): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
        (3): Sequential(
          (0): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
          (1): ConvBnLeaky(
            (convs): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (2): LeakyReLU(negative_slope=0.1, inplace=True)
            )
          )
        )
      )
    )
  )
  (pool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=1024, out_features=10, bias=True)
)
目录
相关文章
|
3月前
|
机器学习/深度学习 存储 PyTorch
【深度学习】Pytorch面试题:什么是 PyTorch?PyTorch 的基本要素是什么?Conv1d、Conv2d 和 Conv3d 有什么区别?
关于PyTorch面试题的总结,包括PyTorch的定义、基本要素、张量概念、抽象级别、张量与矩阵的区别、不同损失函数的作用以及Conv1d、Conv2d和Conv3d的区别和反向传播的解释。
176 2
|
机器学习/深度学习 编解码
MobileNetV1详细原理(含torch源码)
MobilenetV1(含torch源码)—— cifar10
347 0
MobileNetV1详细原理(含torch源码)
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
详解Batch Normalization并基于PyTorch实操(附代码)
详解Batch Normalization并基于PyTorch实操(附代码)
151 2
|
机器学习/深度学习 存储 编解码
MobileNetV3详细原理(含torch源码)
MobilneNetV3详细原理(含torch源码)—— cifar10
702 0
MobileNetV3详细原理(含torch源码)
|
机器学习/深度学习 计算机视觉 异构计算
MobileNetV2详细原理(含torch源码)
MobileNetV2详细原理(含torch源码)—— cifar10
466 0
MobileNetV2详细原理(含torch源码)
|
机器学习/深度学习 算法 TensorFlow
Darknet19详细原理(含tensorflow版源码)
Darknet19详细原理(含tensorflow版源码)—— 猫狗分类
185 0
Darknet19详细原理(含tensorflow版源码)
|
机器学习/深度学习 TensorFlow 算法框架/工具
VGG16详细原理(含tensorflow版源码)
VGG16详细原理(含tensorflow版源码)
960 0
VGG16详细原理(含tensorflow版源码)
|
机器学习/深度学习 算法 TensorFlow
LeNet5详细原理(含tensorflow版源码)
LeNet5详细原理(含tensorflow版源码)
192 0
LeNet5详细原理(含tensorflow版源码)
|
机器学习/深度学习 TensorFlow 算法框架/工具
ResNet18详细原理(含tensorflow版源码)
ResNet18详细原理(含tensorflow版源码)
848 0
ResNet18详细原理(含tensorflow版源码)
|
机器学习/深度学习 TensorFlow 算法框架/工具
AlexNet8详细原理(含tensorflow版源码)
AlexNet8详细原理(含tensorflow版源码)
105 0
AlexNet8详细原理(含tensorflow版源码)