从中序与后序构建二叉树
给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
示例 1:
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]
示例 2:
输入:inorder = [-1], postorder = [-1]
输出:[-1]
思路
- 判断数组是否为空 !
- 不为空则向下继续,为空返回null
- 去后序数组中的最后一个元素为树的头节点的val值,(原因由后序遍历可知)
- 切割中序数组 ,以头节点的val值为区分(作为切割点) ,切割成中序左数组 和 中序右数组
- 切割后序数组, 切成后序左数组 和后序右数组
- 递归处理左右区间
思维图
代码实现(复杂易懂)
class Solution { public TreeNode buildTree(int[] inorder, int[] postorder) { if(inorder.length == 0 || postorder.length == 0){ return null; } int rootVal = postorder[postorder.length - 1]; TreeNode node = new TreeNode(rootVal); int inSize = inorder.length; int postSize = postorder.length; int mid; for(mid = 0; mid < inSize;mid++){ if(inorder[mid] == rootVal){ break; } } //切割中序 int inBegin = 0; int inEnd = mid; int[] newIn = Arrays.copyOfRange(inorder,inBegin,inEnd); int[] newPost = Arrays.copyOfRange(postorder,inBegin,inEnd); node.left = buildTree(newIn,newPost); int postBegin = mid + 1 ; int postEnd = postorder.length - 1; int[] newIn2 = Arrays.copyOfRange(inorder , postBegin , inSize); int[] newPost2 = Arrays.copyOfRange(postorder,mid, postEnd); node.right = buildTree(newIn2,newPost2); return node; } }
代码实现(简易map版)
class Solution { Map<Integer, Integer> map; // 方便根据数值查找位置 public TreeNode buildTree(int[] inorder, int[] postorder) { map = new HashMap<>(); for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置 map.put(inorder[i], i); } return findNode(inorder, 0, inorder.length, postorder,0, postorder.length); // 前闭后开 } public TreeNode findNode(int[] inorder, int inBegin, int inEnd, int[] postorder, int postBegin, int postEnd) { // 参数里的范围都是前闭后开 if (inBegin >= inEnd || postBegin >= postEnd) { // 不满足左闭右开,说明没有元素,返回空树 return null; } int rootIndex = map.get(postorder[postEnd - 1]); // 找到后序遍历的最后一个元素在中序遍历中的位置 TreeNode root = new TreeNode(inorder[rootIndex]); // 构造结点 int lenOfLeft = rootIndex - inBegin; // 保存中序左子树个数,用来确定后序数列的个数 root.left = findNode(inorder, inBegin, rootIndex, postorder, postBegin, postBegin + lenOfLeft); root.right = findNode(inorder, rootIndex + 1, inEnd, postorder, postBegin + lenOfLeft, postEnd - 1); return root; } }
从前序与中序构建二叉树
思路
与从中序和后序构建二叉树相同
代码实现
/** * 通过中序数组 and 后序数组 构建一颗二叉树 * @param inorder 中序数组 * @param postorder 后序数组 * @return */ Node* buildTree(vector<int> &inorder , vector<int> &postorder){ if (inorder.size() == 0){ return nullptr; } //1. 先找到root节点 int val = postorder[postorder.size()-1]; Node *root = new Node(val); //2.找到中序数组的切割点 int index ; // 中序切割点 for(index= 0; index < inorder.size();index++){ if (inorder[index] == val){ break; } } //3. 切割中序数组 //[inorder.begin() - index) vector<int> leftIn(inorder.begin(),inorder.begin() + index); //(index, inorder.end()] vector<int> rightIn(inorder.begin() + index + 1,inorder.end()); //4. 重新定义后序的长度,删除root节点占的位置 postorder.resize(postorder.size() - 1); //5. 切割后序数组 // [postorder.begin() , leftIn.size() + postorder.begin() ) vector<int> leftPost(postorder.begin(), postorder.begin() + leftIn.size()); // (leftIn.size() + postorder.begin() , postorder.end() ] vector<int> rightPost(postorder.begin() + leftIn.size() , postorder.end()); root->left = buildTree(leftIn, leftPost); root->right = buildTree(rightIn , rightPost); return root; }
c++版本实现
从中序与后序构建二叉树
/** * 通过中序数组 and 后序数组 构建一颗二叉树 * @param inorder 中序数组 * @param postorder 后序数组 * @return */ Node* buildTree(vector<int> &inorder , vector<int> &postorder){ if (inorder.size() == 0){ return nullptr; } //1. 先找到root节点 int val = postorder[postorder.size()-1]; Node *root = new Node(val); //2.找到中序数组的切割点 int index ; // 中序切割点 for(index= 0; index < inorder.size();index++){ if (inorder[index] == val){ break; } } //3. 切割中序数组 //[inorder.begin() - index) vector<int> leftIn(inorder.begin(),inorder.begin() + index); //(index, inorder.end()] vector<int> rightIn(inorder.begin() + index + 1,inorder.end()); //4. 重新定义后序的长度,删除root节点占的位置 postorder.resize(postorder.size() - 1); //5. 切割后序数组 // [postorder.begin() , leftIn.size() + postorder.begin() ) vector<int> leftPost(postorder.begin(), postorder.begin() + leftIn.size()); // (leftIn.size() + postorder.begin() , postorder.end() ] vector<int> rightPost(postorder.begin() + leftIn.size() , postorder.end()); root->left = buildTree(leftIn, leftPost); root->right = buildTree(rightIn , rightPost); return root; }
从前序与中序构建二叉树
Node* Build(vector<int> &preorder ,vector<int> &inorder){ if (inorder.size() == 0){ return nullptr; } int val = preorder[0]; Node * root = new Node(val); int index; for(index = 0;index < inorder.size();index++){ if (val == inorder[index]) break; } //重新定义前序数组的大小 for (int i = 1; i < preorder.size(); ++i) { preorder[i - 1] = preorder[i]; } preorder.resize(preorder.size() - 1); //切割中序数组 //[ inorder.begin(), inorder.begin() + index ) vector<int> leftIn(inorder.begin(), inorder.begin() + index); //( inorder.begin() + index + 1,inorder.end() ] vector<int> rightIn(inorder.begin() + index + 1,inorder.end()); //切割后序数组 //[ preorder.begin() , preorder.begin() + leftIn.size() ) vector<int> leftPre(preorder.begin() , preorder.begin() + leftIn.size()); // ( preorder.begin() + leftIn.size() , preorder.end() ] vector<int> rightPre(preorder.begin() + leftIn.size() , preorder.end()); //递归链接 root->left = Build(leftPre,leftIn); root->right = Build(rightPre, rightIn); return root; }
主函数
int main(){ int arr[] = {1, 2, 3, 4, 5}; int size = sizeof(arr) / sizeof(arr[0]); // 计算数组的长度 // 将数组转换为 vector vector<int> vec(arr, arr + size); vector<int> preorder = {3,9,20,15,7}; vector<int> inOrder = {9,3,15,20,7}; vector<int> postOrder = {9,15,7,20,3}; Node* root = buildTree(inOrder,postOrder); Node* root1 = Build(preorder,inOrder); preOrder(root1); preOrder(root); return 0; }
参考说明(感谢!):
力扣!
代码随想录!