【PyTorch】Neural Network 神经网络(下)

简介: 【PyTorch】Neural Network 神经网络(下)

6、Linear Layers - Linear

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.liner1 = Linear(in_features=196608, out_features=10)
    def forward(self, input):
        output = self.liner1(input)
        return output
tudui = Tudui()
for data in dataloader:
    imgs, targets = data
    print(imgs.shape)  # torch.Size([64, 3, 32, 32])
    output = torch.reshape(imgs, (1, 1, 1, -1))
    print(output.shape)  # torch.Size([1, 1, 1, 196608])
    output = tudui(output)
    print(output.shape)  # torch.Size([1, 1, 1, 10])
Files already downloaded and verified
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
...

6.1 flatten

参考文档:https://pytorch.org/docs/stable/generated/torch.flatten.html?highlight=flatten#torch.flatten

output = torch.reshape(imgs, (1, 1, 1, -1))
print(output.shape)  # torch.Size([1, 1, 1, 196608])
改为
output = torch.flatten(imgs)
print(output.shape)  # torch.Size([196608]) output --> torch.Size([10])

7、CIFAR 10 Model and Sequential

CIFAR 10:https://www.cs.toronto.edu/~kriz/cifar.html

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2)
        self.maxpool1 = MaxPool2d(kernel_size=2)
        self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2)
        self.maxpool2 = MaxPool2d(kernel_size=2)
        self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
        self.maxpool3 = MaxPool2d(kernel_size=2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024, 64)
        self.linear2 = Linear(64, 10)
    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x
tudui = Tudui()
print(tudui)
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)
Tudui(
  (conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear1): Linear(in_features=1024, out_features=64, bias=True)
  (linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 10])

Sequential:https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self, x):
        x = self.model1(x)
        return x
tudui = Tudui()
print(tudui)
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)
writer = SummaryWriter("../logs")
writer.add_graph(tudui, input)
writer.close()
Tudui(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([64, 10])

8、Loss Functions

8.1 L1Loss

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html#torch.nn.L1Loss

import torch
from torch.nn import L1Loss
input = torch.tensor([1, 2, 3], dtype=torch.float32)  # torch.Size([3])
target = torch.tensor([1, 2, 5], dtype=torch.float32)  # torch.Size([3])
input = torch.reshape(input, (1, 1, 1, 3))  # torch.Size([1, 1, 1, 3])
target = torch.reshape(target, (1, 1, 1, 3))  # torch.Size([1, 1, 1, 3])
loss1 = L1Loss(reduction='mean')  # 默认为mean
result = loss1(input, target)
print(result)
loss2 = L1Loss(reduction='sum')  # sum
result = loss2(input, target)
print(result)
tensor(0.6667)
tensor(2.)

8.2 MSELoss

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss

import torch
from torch.nn import MSELoss
input = torch.tensor([1, 2, 3], dtype=torch.float32)
target = torch.tensor([1, 2, 5], dtype=torch.float32)
input = torch.reshape(input, (1, 1, 1, 3))
target = torch.reshape(target, (1, 1, 1, 3))
loss = MSELoss()
result = loss(input, target)
print(result)
tensor(1.3333)

8.3 CrossEntropyLoss

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss

计算公式:

import torch
from torch.nn import CrossEntropyLoss
input = torch.tensor([0.1, 0.2, 0.3])
target = torch.tensor([1])
input = torch.reshape(input, (1, 3))
cross = CrossEntropyLoss()
result = cross(input, target)
print(result)
tensor(1.1019)

8.4 Sequential

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self, x):
        x = self.model1(x)
        return x
tudui = Tudui()
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    print(output)
    print(targets)
Files already downloaded and verified
tensor([[-0.0715,  0.0221, -0.0562, -0.0901,  0.0627, -0.0606,  0.0137,  0.0783,
         -0.0951, -0.1070]], grad_fn=<AddmmBackward0>)
tensor([3])
tensor([[-0.0715,  0.0304, -0.0729, -0.0767,  0.0554, -0.0834, -0.0089,  0.0624,
         -0.0777, -0.0848]], grad_fn=<AddmmBackward0>)
tensor([8])
...

加入Loss Functions:

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear, CrossEntropyLoss
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self, x):
        x = self.model1(x)
        return x
loss = CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    result_loss = loss(output, targets)
    print(result_loss)
Files already downloaded and verified
tensor(2.3437, grad_fn=<NllLossBackward0>)
tensor(2.3600, grad_fn=<NllLossBackward0>)
tensor(2.3680, grad_fn=<NllLossBackward0>)
...

8.5 backward

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear, CrossEntropyLoss
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self, x):
        x = self.model1(x)
        return x
loss = CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    result_loss = loss(output, targets)
    result_loss.backward()  # 反向传播
    print("OK")

目录
相关文章
|
1月前
|
机器学习/深度学习 算法 PyTorch
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
238 1
|
2月前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
1月前
|
机器学习/深度学习 PyTorch 测试技术
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
61 0
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
61 0
|
10天前
|
机器学习/深度学习 数据可视化 PyTorch
PyTorch小技巧:使用Hook可视化网络层激活(各层输出)
这篇文章将演示如何可视化PyTorch激活层。可视化激活,即模型内各层的输出,对于理解深度神经网络如何处理视觉信息至关重要,这有助于诊断模型行为并激发改进。
12 1
|
18天前
|
网络协议
centos8 网卡 Nmcli(是network的简写 Nmcli)配置网络
centos8 网卡 Nmcli(是network的简写 Nmcli)配置网络
17 0
|
1月前
|
机器学习/深度学习 算法 PyTorch
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
58 2
|
1月前
|
机器学习/深度学习 自然语言处理 PyTorch
【PyTorch实战演练】基于全连接网络构建RNN并生成人名
【PyTorch实战演练】基于全连接网络构建RNN并生成人名
23 0
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)
卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)
20 0