💥1 概述
极限学机(Extreme Learning Machine,ELM )神经网络模型与其他方法相比,极限学习机只需设置隐层神经元的数目,通过求解方程β得到唯一的最优解。ELM神经网络模型如图1所示。
📚2 运行结果
部分代码:
%%%%%%%%%%% Load training dataset train_data=TrainingData_File; T=train_data(:,1)'; P=train_data(:,2:size(train_data,2))'; clear train_data; % Release raw training data array %%%%%%%%%%% Load testing dataset test_data=TestingData_File; TV.T=test_data(:,1)'; TV.P=test_data(:,2:size(test_data,2))'; clear test_data; % Release raw testing data array NumberofTrainingData=size(P,2); NumberofTestingData=size(TV.P,2); NumberofInputNeurons=size(P,1); if Elm_Type~=REGRESSION %%%%%%%%%%%% Preprocessing the data of classification sorted_target=sort(cat(2,T,TV.T),2); label=zeros(1,1); % Find and save in 'label' class label from training and testing data sets label(1,1)=sorted_target(1,1); j=1; for i = 2:(NumberofTrainingData+NumberofTestingData) if sorted_target(1,i) ~= label(1,j) j=j+1; label(1,j) = sorted_target(1,i); end end number_class=j; NumberofOutputNeurons=number_class; %%%%%%%%%% Processing the targets of training temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); for i = 1:NumberofTrainingData for j = 1:number_class if label(1,j) == T(1,i) break; end end temp_T(j,i)=1; end T=temp_T*2-1; %%%%%%%%%% Processing the targets of testing temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); for i = 1:NumberofTestingData for j = 1:number_class if label(1,j) == TV.T(1,i) break; end end temp_TV_T(j,i)=1; end TV.T=temp_TV_T*2-1; end % end if of Elm_Type %%%%%%%%%%% Calculate weights & biases start_time_train=cputime; %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases BiasofHiddenNeurons (b_i) of hidden neurons InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1); tempH=InputWeight*P; clear P; % Release input of training data ind=ones(1,NumberofTrainingData); BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix BiasofHiddenNeurons to match the demention of H tempH=tempH+BiasMatrix;
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]田艳丰,王顺,王哲,刘洋,邢作霞.基于粒子群算法改进极限学习机的风电功率短期预测[J].电器与能效管理技术,2022(3):39-4476
[2]商立群,李洪波,侯亚东,黄辰浩,张建涛.基于特征选择和优化极限学习机的短期电力负荷预测[J].西安交通大学学报,2022,56(4):165-175
[3]Apdullah YAYIK (2022). Sine wave learning with Extreme Learning Machine (MWE)