混沌引力搜索算法(CGSA)解决三个机械工程设计问题(Matlab代码实现)

简介: 混沌引力搜索算法(CGSA)解决三个机械工程设计问题(Matlab代码实现)

💥1 概述

文献来源:

本文旨在研究混沌引力搜索算法( CGSA )在求解焊接梁设计( WBD )、压缩弹簧设计( CSD )和压力容器设计( PVD )等机械工程设计框架中的性能。



本研究将十个混沌映射与引力常数相结合,以增加引力搜索算法( GSA )的开发能力。此外,CGSA还用于保持引力常数的自适应能力。此外,混沌映射被用于克服标准GSA的早熟收敛和陷入局部极小的问题。


📚2 运行结果

部分代码:

function [Fbest,Lbest,BestChart]=GSA(Benchmark_Function_ID,N,Max_Iteration,ElitistCheck,min_flag,Rpower)
%V:   Velocity.
%a:   Acceleration.
%M:   Mass.  Ma=Mp=Mi=M;
%dim: Dimension of the test function.
%N:   Number of agents.
%X:   Position of agents. dim-by-N matrix.
%R:   Distance between agents in search space.
%[low-up]: Allowable range for search space.
%Rnorm:  Norm in eq.8.
%Rpower: Power of R in eq.7.
 Rnorm=2; 
%get allowable range and dimension of the test function.
 [down,up,dim]=benchmark_functions_details(Benchmark_Function_ID);
%random initialization for agents.
X=initialization(dim,N,up,down); 
%create the best so far chart and average fitnesses chart.
BestChart=[];
V=zeros(dim,N);
for iteration=1:Max_Iteration
%     iteration
    %Checking allowable range. 
    X=space_bound(X,up,down); 
    %Evaluation of agents. 
    fitness=evaluateF(X,Benchmark_Function_ID); 
    if min_flag==1
    [best, best_X]=min(fitness); %minimization.
    else
    [best best_X]=max(fitness); %maximization.
    end        
    if iteration==1
       Fbest=best;Lbest=X(:,best_X);
    end
    if min_flag==1
      if best<Fbest  %minimization.
       Fbest=best;Lbest=X(:,best_X);
      end
    else 
      if best>Fbest  %maximization
       Fbest=best;Lbest=X(:,best_X);
      end
    end
BestChart=[BestChart Fbest];
%Calculation of M. eq.14-20
[M]=massCalculation(fitness,min_flag); 
%Calculation of Gravitational constant. eq.13.
G=Gconstant(iteration,Max_Iteration); 
%Calculation of accelaration in gravitational field. eq.7-10,21.
a=Gfield(M,X,G,Rnorm,Rpower,ElitistCheck,iteration,Max_Iteration);
%Agent movement. eq.11-12
[X,V]=move(X,a,V);
end %iteration


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现

相关文章
|
6天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
11天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
18天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
19 3
|
17天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。