[Bart]论文实现:Denoising Sequence-to-Sequence Pre-training for Natural Language Generation...

简介: [Bart]论文实现:Denoising Sequence-to-Sequence Pre-training for Natural Language Generation...

论文:BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

作者:Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer

时间:2019

一、完整代码

这里我们使用python代码进行实现

# 完整代码在这里
# 这里感觉在输出端实现就好了,下次有时间在弄;

二、论文解读

BART论文名字为Denoising Sequence-to-Sequence Pre-training for Natural Language...,在这里有两个名词要考虑,一个是Sequence-to-Sequence,一个是Pre-training;前者的架构较为出名的有RNNTransformer,后者的架构较为出名的有BertGPT;但是这里要注意的是BART是一个Transformer架构;

其于Transformer不同的地方只有一个,就是input;毫无疑问,这就是一篇水文;

2.1 模型架构

模型架构就是Transformer

论文在水的时候,在画图故意不用Transformer来进行对比,而是用BertGPT来对比,很贼;

2.2 输入端

BART在输入端中采取的措施:

下面我们对其依次介绍:

Token Masking

这里采取的方式和BERT一样,使用随机的mask来regularization;

Token Deletion

这里采取的方式是随机删除一些token,注意是删除而不是使用掩码,是从源头删除,掩码的长度会改变;

Text Infilling

这里采取的方式是填充,有删除就有填充,这很好理解;

Sentence Permutation

这里是通过标点符号来切割sentences,然后对sentences进行排序,再来训练;

Document Rotation

这里就相当于说是随机打乱,没有一点规律;

2.3 微调

微调不同任务采取不同的措施,论文中的图片还挺形象的,如下所示:

Sequence Classification Tasks

这里使用transformerdecoder中隐藏层的最后一层进行文本分类,就相当于BERT中的[cls]的效果,至于为什么是最后一个,因为解码器是单向的,而最后一个是最后的输出,其是自回归模型与前面的信息进行了充分的交互;

Token Classification Tasks

看起来高大上,其本质就是在后面弄一层dense层,然后继续词的预测;这里写成classification真有意思…

Sequence Generation Tasks

GPT一样,无需解释;

Machine Translation

这个就更不用说了,这就是transformer本来的任务;

2.4 结果

使用了消融实验,结果如下所示:

不同模型之间的不同如下所示:

其中我们可以看到,BART的效果和RoBERTaXLNet的效果差不多;

其中我们可以看到,在文本总结上效果挺好的;

三、过程实现

这里感觉在输出端实现就好了,下次有时间在弄;

四、整体总结

论文好水,就是几个regularization结合在一起;


目录
打赏
0
0
0
0
14
分享
相关文章
首个云超算国标正式发布!
近日,我国首个云超算国家标准GB/T 45400-2025正式发布,将于今年10月实施。该标准由阿里云联合多家机构起草,为云超算在高性能计算领域的应用提供规范。云超算结合传统HPC与云计算优势,解决传统HPC复杂、昂贵等问题。阿里云E-HPC V2.0是国内首批通过该标准认证的产品,支持大规模弹性计算,显著降低成本。新标准将推动算力基础设施迈向标准化、智能化新时代。
快速部署实现Bolt.diy
Bolt.diy 是 Bolt.new 的开源版本,提供灵活的自然语言交互与全栈开发支持。基于阿里云函数计算 FC 和百炼模型服务,最快5分钟完成部署。新手注册阿里云账号后可领取免费额度,按指引开通相关服务并授权。通过项目模板一键部署,配置 API-KEY 后即可使用。Bolt.diy 支持多种场景,如物联网原型开发、久坐提醒、语音控制灯光等,助力快速实现创意应用。
2244 19
【MCP教程系列】在阿里云百炼,实现超级简单的MCP服务部署
阿里云百炼推出业界首个全生命周期MCP服务,支持一键在线注册托管。企业可将自研或外部MCP服务部署于阿里云百炼平台,借助FC函数计算能力,免去资源购买与服务部署的复杂流程,快速实现开发。创建MCP服务仅需四步,平台提供预置服务与自定义部署选项,如通过npx安装代码配置Flomo等服务。还可直接在控制台开通预置服务,体验高效便捷的企业级解决方案。
【MCP教程系列】在阿里云百炼,实现超级简单的MCP服务部署
快速带你上手通义灵码 2.0,体验飞一般的感觉
通义灵码个人版为开发者免费提供智能编码能力,专业版限免期内开放更多功能。使用需先注册阿里云账号,支持JetBrains IDEs、Visual Studio Code等开发工具。以Visual Studio Code为例,安装插件并登录后即可体验其强大功能。通义灵码2.0在代码生成、需求理解及单元测试自动化等方面有显著提升,支持多语言和复杂场景,大幅提高开发效率。
234891 36
快速带你上手通义灵码 2.0,体验飞一般的感觉
一键部署 Dify + MCP Server,高效开发 AI 智能体应用
本文将着重介绍如何通过 SAE 快速搭建 Dify AI 研发平台,依托 Serverless 架构提供全托管、免运维的解决方案,高效开发 AI 智能体应用。
1888 6
阿里云百炼 MCP服务使用教程合集
阿里云百炼推出首个全生命周期MCP服务,支持一键部署、无需运维,具备高可用与低成本特点。该服务提供多类型供给、低成本托管及全链路工具兼容,帮助企业快速构建专属智能体。MCP(模型上下文协议)作为标准化开源协议,助力大模型与外部工具高效交互。教程涵盖简单部署、GitHub运营、数据分析可视化及文档自动化等场景,助您快速上手。欢迎加入阿里云百炼生态,共同推动AI技术发展!
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
本文介绍了如何利用阿里云通义灵码AI程序员的Qwen2.5-Max模型,在VS Code中一键生成扫雷小游戏。通过安装通义灵码插件并配置模型,输入指令即可自动生成包含游戏逻辑与UI设计的Python代码。生成的游戏支持难度选择,运行稳定无Bug。实践表明,AI工具显著提升开发效率,但人机协作仍是未来趋势。建议开发者积极拥抱新技术,同时不断提升自身技能以适应行业发展需求。
22202 17
MCP Server 开发实战 | 大模型无缝对接 Grafana
以 AI 世界的“USB-C”标准接口——MCP(Model Context Protocol)为例,演示如何通过 MCP Server 实现大模型与阿里云 Grafana 服务的无缝对接,让智能交互更加高效、直观。
476 110
MCP 正当时:FunctionAI MCP 开发平台来了!
Function AI 是基于函数计算构建的 Serverless AI 应用开发平台,基于函数计算的运行时能力上线了完整的 MCP 开发能力,您可以进入 FunctionAI 控制台,快速体验 MCP 服务的能力。
405 10