布隆过滤器使用

简介: 关于布隆过滤器使用简单情形

布隆过滤器使用场景

  1. 判断给定数据是否存在:比如判断一个数字是否存在于包含大量数字的数字集中(数字集很大,上亿)、 防止缓存穿透(判断请求的数据是否有效避免直接绕过缓存请求数据库)等等、邮箱的垃圾邮件过滤(判断一个邮件地址是否在垃圾邮件列表中)、黑名单功能(判断一个IP地址或手机号码是否在黑名单中)等等。
  2. 去重:比如爬给定网址的时候对已经爬取过的 URL 去重、对巨量的 QQ号/订单号去重。

去重场景也需要用到判断给定数据是否存在,因此布隆过滤器主要是为了解决海量数据的存在性问题。

# 编码实战

# 通过 Java 编程手动实现布隆过滤器

我们上面已经说了布隆过滤器的原理,知道了布隆过滤器的原理之后就可以自己手动实现一个了。

如果你想要手动实现一个的话,你需要:

  1. 一个合适大小的位数组保存数据
  2. 几个不同的哈希函数
  3. 添加元素到位数组(布隆过滤器)的方法实现
  4. 判断给定元素是否存在于位数组(布隆过滤器)的方法实现。

下面给出一个我觉得写的还算不错的代码(参考网上已有代码改进得到,对于所有类型对象皆适用):

import java.util.BitSet;
public class MyBloomFilter {
    /**
     * 位数组的大小
     */
    private static final int DEFAULT_SIZE = 2 << 24;
    /**
     * 通过这个数组可以创建 6 个不同的哈希函数
     */
    private static final int[] SEEDS = new int[]{3, 13, 46, 71, 91, 134};
    /**
     * 位数组。数组中的元素只能是 0 或者 1
     */
    private BitSet bits = new BitSet(DEFAULT_SIZE);
    /**
     * 存放包含 hash 函数的类的数组
     */
    private SimpleHash[] func = new SimpleHash[SEEDS.length];
    /**
     * 初始化多个包含 hash 函数的类的数组,每个类中的 hash 函数都不一样
     */
    public MyBloomFilter() {
        // 初始化多个不同的 Hash 函数
        for (int i = 0; i < SEEDS.length; i++) {
            func[i] = new SimpleHash(DEFAULT_SIZE, SEEDS[i]);
        }
    }
    /**
     * 添加元素到位数组
     */
    public void add(Object value) {
        for (SimpleHash f : func) {
            bits.set(f.hash(value), true);
        }
    }
    /**
     * 判断指定元素是否存在于位数组
     */
    public boolean contains(Object value) {
        boolean ret = true;
        for (SimpleHash f : func) {
            ret = ret && bits.get(f.hash(value));
        }
        return ret;
    }
    /**
     * 静态内部类。用于 hash 操作!
     */
    public static class SimpleHash {
        private int cap;
        private int seed;
        public SimpleHash(int cap, int seed) {
            this.cap = cap;
            this.seed = seed;
        }
        /**
         * 计算 hash 值
         */
        public int hash(Object value) {
            int h;
            return (value == null) ? 0 : Math.abs(seed * (cap - 1) & ((h = value.hashCode()) ^ (h >>> 16)));
        }
    }
}

测试:

String value1 = "https://javaguide.cn/";
String value2 = "https://github.com/Snailclimb";
MyBloomFilter filter = new MyBloomFilter();
System.out.println(filter.contains(value1));
System.out.println(filter.contains(value2));
filter.add(value1);
filter.add(value2);
System.out.println(filter.contains(value1));
System.out.println(filter.contains(value2));

Output:

false
false
true
true

测试:

Integer value1 = 13423;
Integer value2 = 22131;
MyBloomFilter filter = new MyBloomFilter();
System.out.println(filter.contains(value1));
System.out.println(filter.contains(value2));
filter.add(value1);
filter.add(value2);
System.out.println(filter.contains(value1));
System.out.println(filter.contains(value2));

Output:

false
false
true
true

# 利用 Google 开源的 Guava 中自带的布隆过滤器

自己实现的目的主要是为了让自己搞懂布隆过滤器的原理,Guava 中布隆过滤器的实现算是比较权威的,所以实际项目中我们不需要手动实现一个布隆过滤器。

首先我们需要在项目中引入 Guava 的依赖:

<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>28.0-jre</version>
</dependency>

实际使用如下:

我们创建了一个最多存放 最多 1500 个整数的布隆过滤器,并且我们可以容忍误判的概率为百分之(0.01)

// 创建布隆过滤器对象
BloomFilter<Integer> filter = BloomFilter.create(
    Funnels.integerFunnel(),
    1500,
    0.01);
// 判断指定元素是否存在
System.out.println(filter.mightContain(1));
System.out.println(filter.mightContain(2));
// 将元素添加进布隆过滤器
filter.put(1);
filter.put(2);
System.out.println(filter.mightContain(1));
System.out.println(filter.mightContain(2));

在我们的示例中,当 mightContain() 方法返回 true 时,我们可以 99%确定该元素在过滤器中,当过滤器返回 false 时,我们可以 100%确定该元素不存在于过滤器中。

Guava 提供的布隆过滤器的实现还是很不错的(想要详细了解的可以看一下它的源码实现),但是它有一个重大的缺陷就是只能单机使用(另外,容量扩展也不容易),而现在互联网一般都是分布式的场景。为了解决这个问题,我们就需要用到 Redis 中的布隆过滤器了。


著作权归Guide所有 原文链接:https://javaguide.cn/cs-basics/data-structure/bloom-filter.html#%E5%88%A9%E7%94%A8-google-%E5%BC%80%E6%BA%90%E7%9A%84-guava-%E4%B8%AD%E8%87%AA%E5%B8%A6%E7%9A%84%E5%B8%83%E9%9A%86%E8%BF%87%E6%BB%A4%E5%99%A8

目录
相关文章
|
3月前
|
存储 缓存 NoSQL
详解布隆过滤器原理与实现
详解布隆过滤器原理与实现
|
5月前
|
存储 算法 Java
哈希算法篇 - 布隆过滤器
哈希算法篇 - 布隆过滤器
52 1
|
5月前
|
算法 容器
布隆过滤器
布隆过滤器
|
6月前
|
存储 数据采集 缓存
解密布隆过滤器:数据领域的魔法阵
解密布隆过滤器:数据领域的魔法阵
102 0
|
6月前
|
存储 NoSQL Java
什么是布隆过滤器?如何实现布隆过滤器?
什么是布隆过滤器?如何实现布隆过滤器?
131 0
|
存储 数据采集 缓存
布隆过滤器:原理与应用
在日常生活和工作中,我们经常需要处理海量的数据,筛选出有用的信息。这个时候,布隆过滤器(Bloom Filter)就派上了用场。
187 1
布隆过滤器:原理与应用
|
6月前
|
存储 算法 Linux
C++ 哈希的应用【布隆过滤器】
C++ 哈希的应用【布隆过滤器】
72 0
|
存储 算法 数据库
哈希的应用:布隆过滤器(C++实现)
哈希的应用:布隆过滤器(C++实现)
81 0
|
存储 数据采集 自然语言处理
浅析布隆过滤器
布隆过滤器 (Bloom Filter) 是 1970 年由布隆提出的。它可以检索一个元素是否存在于集合中。它的优点是空间效率高,查询时间极快,缺点是有一定的误判率,而且删除困难。
168 0
|
存储 人工智能 算法
哈希的应用——布隆过滤器
布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。