[Python] 数据预处理(缺失值、异常值、重复值) [相关方法参数说明、代码示例、相关概念](一)

简介: [Python] 数据预处理(缺失值、异常值、重复值) [相关方法参数说明、代码示例、相关概念]

image.png


前言

系列文章目录

[Python]目录

视频及资料和课件

链接:https://pan.baidu.com/s/1LCv_qyWslwB-MYw56fjbDg?pwd=1234

提取码:1234

数据、文献

数据、文献:

「[Python] 数据预处理(缺失…异常值、重复值)」

返回文章目录

1. 缺失值处理

  • 对于缺失值一般有两种处理方式:
  • 1.将缺失值直接删除
  • 2.对缺失值进行填补

返回文章目录

1.1 缺失值删除

返回文章目录

1.1.1 适用情况

  • 对于缺失值采用直接删除的方式进行处理有如下几种情况:
  • 1.对于数据表中的一行,如果整行数据缺失,或者是在一行中所需要使用的数据列对应的数据缺失,那么可以将这一行直接进行删除。
    如:

  • 2.如果在一行或者一列中存在大量的数据缺失,那么可以对该行或该列直接进行删除。

在一行或一列中,数据的缺失量是否达到需要删除该行或该列,需要视情况而定,这没有十分准确的标准。

  • 如:

表1:

表2:

返回文章目录

1.1.2 代码实现

返回文章目录

1.1.2.1 情况一代码

通过调用 dropna() 方法,删除整行数据缺失的行,或者在一行中所需要使用的数据列对应的数据缺失的行。

  • dropna():
  • 参数:
  • axis:表示轴向,0为删除行,1为删除列,默认为0.
  • how:接收 string 类型的数据为参数,表示删除的方式,any 表示只要有缺失值就删除该行或列,all表示全部为缺失值才删除行或列。默认为any。
  • subset:接收 array 类型的数据为参数,表示进行缺失值处理的行或列,默认为None,表示所有的行或列。
  • inplace:表示是否在原表上进行操作,默认为False。
# 包的导入
import pandas as pd
# 读取数据
data = pd.read_excel('../../监测点C逐日污染物浓度实测数据.xlsx')
# 删除数据缺失的行
# 当 subset 指定的列全部缺失才删除对应的行
data_new = data.dropna(
  how='all', 
  subset=[
    'SO2实测日均(μg/m³)', 
    'NO2实测日均(μg/m³)', 
    'PM10实测日均(μg/m³)', 
    'PM2.5实测日均(μg/m³)', 
    'O3实测八小时滑动平均日最大值(μg/m³)', 
    'CO实测日均(mg/m³)'
  ]  
)
# print(data_new)
# 导出处理后的数据
data_new.to_excel('./1.xlsx')

返回文章目录

1.1.2.2 情况二代码
  1. 如果在一行中存在大量的数据缺失,直接删除该行。

数据表表1

中一共有8列数据,除去第一第二列,剩下六列数据,当一行中缺失的数据大于等于4个时,将该行删除。

  1. 先调用 apply() 方法对数据表的每行进行处理,然后再对数据表中需要删除的行进行删除。
  • apply():
  • 参数:
  • func:接收一个函数作为参数,该函数为对数据表中的每行或每列进行处理的函数,该函数接收有一个参数,用于接收传入的数据表中的行或列。
  • axis:轴向,axis=1表示对数据表中的每行进行处理,axis=0表示对数据表中的每列进行处理。
# 包的导入
import pandas as pd
import numpy as np
# 读取数据
data = pd.read_excel('../../监测点C逐日污染物浓度实测数据.xlsx')
# 当一行中的数据,除去第一第二列,
# 缺失的数据个数大于等于4(该表中一共8列数据)
# 返回空行
# 否则将原来的行返回
def fun(row):
  sub_row = row[2:]
  cnt = sub_row.count()
  if cnt<=2 :
    # return None
    return np.nan
  else :
    return row
# 调用 apply() 方法对每行数据进行处理
re = data.apply(fun, axis=1)
# 删除整行数据为空的行,直接修改原表
re.dropna(how='all', inplace=True)

  1. 如果在一列中存在大量的数据缺失,直接删除该列。

通过对表2

中,每列非空数据的统计,发现湿度这一列存在大量的数据缺失,所以将这列数据整列进行删除。

  • 删除指定列的方法:
  • pop():
  • pop() 方法一次只能删除一列数据,且是对原数组直接进行列的删除,同时会返回删除的列的数据。
  • 参数:
  • item:需要删除的列的列名。
  • drop():
  • drop() 方法支持多列删除,不对原数组直接进行列的删除,会返回一个删除指定列后的新数组。
  • 参数:
  • labels:接收一个字符串类型数据或一个序列为参数,表示要删除的列。
  • axis:轴向,axis=1表示对列进行删除,axis=0表示对行进行删除。
  1. (1)使用 pop() 方法删除指定列:
# 包的导入
import pandas as pd
# 读取数据
data = pd.read_excel('../../监测点C逐小时污染物浓度与气象实测数据.xlsx')
# 删除指定列
data.pop('湿度(%)')
data

相关文章
|
17天前
|
测试技术 API Python
【10月更文挑战第1天】python知识点100篇系列(13)-几种方法让你的电脑一直在工作
【10月更文挑战第1天】 本文介绍了如何通过Python自动操作鼠标或键盘使电脑保持活跃状态,避免自动息屏。提供了三种方法:1) 使用PyAutoGUI,通过安装pip工具并执行`pip install pyautogui`安装,利用`moveRel()`方法定时移动鼠标;2) 使用Pymouse,通过`pip install pyuserinput`安装,采用`move()`方法移动鼠标绝对位置;3) 使用PyKeyboard,同样需安装pyuserinput,模拟键盘操作。文中推荐使用PyAutoGUI,因其功能丰富且文档详尽。
WK
|
3天前
|
Python
Python中format_map()方法
在Python中,`format_map()`方法用于使用字典格式化字符串。它接受一个字典作为参数,用字典中的键值对替换字符串中的占位符。此方法适用于从字典动态获取值的场景,尤其在处理大量替换值时更为清晰和方便。
WK
61 36
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
51 2
11种经典时间序列预测方法:理论、Python实现与应用
|
10天前
|
开发者 Python
Python中的魔法方法与运算符重载
在Python的奇妙世界里,魔法方法(Magic Methods)和运算符重载(Operator Overloading)是两个强大的特性,它们允许开发者以更自然、更直观的方式操作对象。本文将深入探讨这些概念,并通过实例展示如何利用它们来增强代码的可读性和表达力。
|
14天前
|
Linux Android开发 开发者
【Python】GUI:Kivy库环境安装与示例
这篇文章介绍了 Kivy 库的安装与使用示例。Kivy 是一个开源的 Python 库,支持多平台开发,适用于多点触控应用。文章详细说明了 Kivy 的主要特点、环境安装方法,并提供了两个示例:一个简单的 Hello World 应用和一个 BMI 计算器界面。
23 0
|
15天前
|
机器学习/深度学习 数据采集 算法
一个 python + 数据预处理+随机森林模型 (案列)
本文介绍了一个使用Python进行数据预处理和构建随机森林模型的实际案例。首先,作者通过删除不必要的列和特征编码对数据进行了预处理,然后应用随机森林算法进行模型训练,通过GridSearchCV优化参数,最后展示了模型的评估结果。
36 0
|
2月前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
6月前
|
算法 编译器 开发者
如何提高Python代码的性能:优化技巧与实践
本文探讨了如何提高Python代码的性能,重点介绍了一些优化技巧与实践方法。通过使用适当的数据结构、算法和编程范式,以及利用Python内置的性能优化工具,可以有效地提升Python程序的执行效率,从而提升整体应用性能。本文将针对不同场景和需求,分享一些实用的优化技巧,并通过示例代码和性能测试结果加以说明。
|
1月前
|
大数据 Python
Python 高级编程:深入探索高级代码实践
本文深入探讨了Python的四大高级特性:装饰器、生成器、上下文管理器及并发与并行编程。通过装饰器,我们能够在不改动原函数的基础上增添功能;生成器允许按需生成值,优化处理大数据;上下文管理器确保资源被妥善管理和释放;多线程等技术则助力高效完成并发任务。本文通过具体代码实例详细解析这些特性的应用方法,帮助读者提升Python编程水平。
52 5
|
25天前
|
数据采集 机器学习/深度学习 数据处理
Python编程之魔法:从基础到进阶的代码实践
在编程的世界里,Python以其简洁和易读性而闻名。本文将通过一系列精选的代码示例,引导你从Python的基础语法出发,逐步探索更深层次的应用,包括数据处理、网络爬虫、自动化脚本以及机器学习模型的构建。每个例子都将是一次新的发现,带你领略Python编程的魅力。无论你是初学者还是希望提升技能的开发者,这些示例都将是你的宝贵财富。让我们开始这段Python编程之旅,一起揭开它的魔法面纱。