经典机器学习系列(八)【支持向量机】(三)

简介: 经典机器学习系列(八)【支持向量机】(三)

线性不可分支持向量机


线性不可分


  • 设有如下两类样本的训练集:


image.png

线性不可分情况意味着不存在这样的超平面,使训练点中的正类和负类样本能 够完全分别位于该超平面的两侧,即无法将它们完全分开。如果要用超平面来 划分的话,必然有错分的点。


image.png

20200331172741382.png


 现实情况:我们只会线性可分的方法;

  处理思路:允许分类误差,并且在目标函数 中引入对分类误差的惩罚


软间隔最大化


  • 允许支持向量机在一些样本上出错,需要我们将硬间隔最大化改为软间隔最大化,当然,在最大化软间隔的同时,不满足约束的样本应尽可能的少。y i ( w ⋅ x + b ) = 1 软间隔要求是 y i ( w ⋅ x + b ) ≥ 1
  • 为了解决某些样本不满足约束的情况,对每个样本点(x i , y i )引入一个松弛变量ξ i ≥ 0 ,使函数间隔加上松弛变量大于等于1,这样约束条件就变为:


image.png

  • 为了避免ξ i 取太大的值,需要在目标函数中对他们进行惩罚,其中C > 0称为惩罚系数,C值大时,对误分类的惩罚增加,C 值小时对误分类的惩罚减小。

image.png

 有了上面的思路,可以和线性可分支持向量机一样来考虑线性支持向量机的学习问题,线性不可分的线性支持向量机的学习问题就变为如下凸二次规划问题:

image.png

通过求解以上凸二次规划问题,即软间隔最大化问题,得到分离超平面为:


image.png

 相应的分类决策函数为:

image.png

基于对偶的学习算法


  构建拉格朗日对偶函数:

image.png


 可以推出:

image.png


 (2) 将结果代入拉格朗日函数中,整理后可得:

image.png


  对偶问题,凸二次规划问题,有唯一的最优解:

image.png

  (4) 求解上述问题可得到最优的α ∗ ,进而求得w ∗ , b ∗ ,最终获得分离超平面和分类决策函数:

image.png

 得到分类超平面:

image.png

 得到分类决策函数:


image.png

以上是推导过程,实际使用过程是这样的:

  1. 构造并求解最优化问题


image.png

  1. 求得分离超平面:


image.png

  1. 获得分类决策函数:


image.png

软间隔支持向量


  软间隔支持向量具有以下性质:


image.png


相关文章
|
7月前
|
机器学习/深度学习 算法 数据挖掘
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-2
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
|
7月前
|
机器学习/深度学习 Python
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-4
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
|
23天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
79 1
|
7月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第27天】在数据科学和人工智能的领域中,支持向量机(SVM)是一种强大的监督学习模型,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将详细介绍SVM的工作原理、核心概念以及如何在实际问题中应用该算法进行分类和回归分析。我们还将讨论SVM面临的挑战以及如何通过调整参数和核技巧来优化模型性能。
|
4月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
82 3
|
4月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
188 2
|
4月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
68 1
|
7月前
|
机器学习/深度学习 算法 Python
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-1
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-1
|
7月前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
|
7月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第6天】在数据科学和人工智能的广阔天地中,支持向量机(SVM)以其强大的分类能力与理论深度成为机器学习领域中的一个闪亮的星。本文将深入探讨SVM的核心原理、关键特性以及实际应用案例,为读者提供一个清晰的视角来理解这一高级算法,并展示如何利用SVM解决实际问题。
196 7