【5分钟paper】基于近似动态规划的学习、规划和反应的集成架构

简介: 【5分钟paper】基于近似动态规划的学习、规划和反应的集成架构
  • 论文题目:Integrated architectures for learning, planning, and reacting based on approximating dynamic programming

所解决的问题?

  提出Dyna-PI结构和Dyna-Q结构。

背景

  Dyna结构是用机器学习的方法逼近动态规划算法,动态规划算法本身并不是一种学习算法,是一种居于模型的最优策略计算方法。它与state-space search算法非常像,但是与之不同的是动态规划是一种增量式的学习算法,并不考虑action sequences。正是这种增量式的学习算法,使得其更容易处理随机环境和非完美信息问题。对于learned world model问题,通常都是随机的和不确定的,因此动态规划算法就非常合适。Dyna框架就是learn a world model online,与此同时,用动态规划算法学习规划最优行为。

所采用的方法?

Dyna-PI:Dyna by Approximating Policy Iteration

  Dyna-PI中的PI表示的是Policy Iteration,其由四大组成部分:

  1. policy:接收一个当前状态,产生一个动作。
  2. world:接收一个动作,产生下一个状态和奖励信息。
  3. world model:与real model类似,接收状态动作,输出下一个状态
  4. evaluation function:评估状态的好坏。

  其结构如下所示:

  Evaluation Function和Policy可以用函数近似的方法来拟合:决策树、K-D tree,神经网络或者符号规则。

  算法流程

  但是当world model发生改变之后,算法需要很长一段时间才能去适应改变了的model。产生这类问题的原因在于,算法收敛之后,对于非最优策略下的action是很少去选择的,概率基本为0,因此当model改变之后,需要大量的采样才能知道新的最优策略。

Dyna-Q:Dyna by Q-Learning

  将Q-Learning算法融入进来,其实也就是max那一步引入进来,并且作者在选择动作的时候用的玻尔兹曼分布,并且在奖励函数上加噪声来增加探索。

总结

  算法分为两步:1. 使用当前策略与环境互动产生数据,并用这些数据学一个world model出来。2. 基于learned model产生的数据也用来做策略改进,进而减少与真实model的交互。

其它参考链接

相关文章
|
2月前
|
人工智能 定位技术 API
旅行规划太难做?5 分钟构建智能Agent,集成地图 MCP Server
MCP(Model Coordination Protocol)是由Anthropic公司提出的开源协议,旨在通过标准化交互方式解决AI大模型与外部数据源、工具的集成难题。阿里云百炼平台上线了业界首个全生命周期MCP服务,大幅降低Agent开发门槛,实现5分钟快速搭建智能体应用。本文介绍基于百炼平台“模型即选即用+MCP服务”模式,详细展示了如何通过集成高德地图MCP Server为智能体添加地图信息与天气查询能力,构建全面的旅行规划助手。方案涵盖智能体创建、模型配置、指令与技能设置等步骤,并提供清理资源的指导以避免费用产生。
765 104
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
3 秒音频也能克隆?拆解 Spark-TTS 架构的极致小样本学习
本文深入解析了 Spark-TTS 模型的架构与原理,该模型仅需 3 秒语音样本即可实现高质量的零样本语音克隆。其核心创新在于 BiCodec 单流语音编码架构,将语音信号分解为语义 Token 和全局 Token,实现内容与音色解耦。结合大型语言模型(如 Qwen 2.5),Spark-TTS 能直接生成语义 Token 并还原波形,简化推理流程。实验表明,它不仅能克隆音色、语速和语调,还支持跨语言朗读及情感调整。尽管面临相似度提升、样本鲁棒性等挑战,但其技术突破为定制化 AI 声音提供了全新可能。
199 35
|
8月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
451 3
|
9月前
|
缓存 Devops jenkins
专家视角:构建可维护的测试架构与持续集成
【10月更文挑战第14天】在现代软件开发过程中,构建一个可维护且易于扩展的测试架构对于确保产品质量至关重要。本文将探讨如何设计这样的测试架构,并将单元测试无缝地融入持续集成(CI)流程之中。我们将讨论最佳实践、自动化测试部署、性能优化技巧以及如何管理和扩展日益增长的测试套件规模。
158 3
|
3月前
|
Java 数据库连接 应用服务中间件
JavaWeb CRUD 与分页系统架构学习教程
本教程详细讲解了如何使用 Java Web 技术构建一个带有 CRUD 和分页功能的应用程序。以产品信息管理为例,采用 MVC 架构设计,涵盖 Servlet、JSP、JDBC/MyBatis 等技术。内容包括基础知识介绍、项目结构划分、数据库连接配置、DAO 层实现、Service 层设计、Servlet 控制层编写、JSP 前端展示以及分页功能的实现。同时涉及日志配置和 Tomcat 部署运行。通过分层开发,确保代码清晰、职责分明,便于维护和扩展。适合初学者掌握 Java Web 开发全流程,并为学习更高级框架奠定基础。
93 0
|
4月前
|
Java 数据库连接 应用服务中间件
JavaWeb CRUD 与分页系统架构学习教程
本教程将带你一步步构建一个 Java Web 的 CRUD(创建、读取、更新、删除)及分页功能的示例应用,涵盖从基本概念到完整项目架构的各个层次。
91 3
|
6月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
1110 11
架构学习:7种负载均衡算法策略
|
7月前
|
存储 JavaScript 开发工具
基于HarmonyOS 5.0(NEXT)与SpringCloud架构的跨平台应用开发与服务集成研究【实战】
本次的.HarmonyOS Next ,ArkTS语言,HarmonyOS的元服务和DevEco Studio 开发工具,为开发者提供了构建现代化、轻量化、高性能应用的便捷方式。这些技术和工具将帮助开发者更好地适应未来的智能设备和服务提供方式。
177 8
基于HarmonyOS 5.0(NEXT)与SpringCloud架构的跨平台应用开发与服务集成研究【实战】
|
7月前
|
人工智能 自然语言处理
RWKV-7:RWKV系列开源最新的大模型架构,具有强大的上下文学习能力,超越传统的Attention范式
RWKV-7是RWKV系列的最新大模型架构版本,具有强大的上下文学习能力,超越了传统的attention和linear attention范式。本文详细介绍了RWKV-7的主要功能、技术原理及其在多语言处理、文本生成等领域的应用场景。
379 7
RWKV-7:RWKV系列开源最新的大模型架构,具有强大的上下文学习能力,超越传统的Attention范式

热门文章

最新文章