机器学习-特征选择:如何使用Lassco回归精确选择最佳特征?

简介: 本文旨在介绍Lasso回归在精确特征选择中的应用。首先,我们将探讨特征选择的重要性,包括如何提高模型性能和降低计算成本。接着,我们将深入解析Lasso回归的原理和算法,并说明其在特征选择中的优势。为了支撑我们的观点,我们将引用相关文献提供的实证结果和案例分析。

一、引言



特征选择在机器学习领域中扮演着至关重要的角色,它能够从原始数据中选择最具信息量的特征,提高模型性能、减少过拟合,并加快模型训练和预测的速度。在大规模数据集和高维数据中,特征选择尤为重要,因为不必要的特征会增加计算复杂性并引入冗余信息。


Lasso回归是一种强有力的特征选择方法,通过引入L1正则化来推动部分特征系数稀疏化。相比于其他方法,Lasso回归具有良好的解释性和可解释性,能够自动选择与目标变量相关的重要特征,同时将不相关或冗余特征的系数置零。这使得Lasso回归成为特征选择和维度约简的首选方法。


本文旨在介绍Lasso回归在精确特征选择中的应用。首先,我们将探讨特征选择的重要性,包括如何提高模型性能和降低计算成本。接着,我们将深入解析Lasso回归的原理和算法,并说明其在特征选择中的优势。为了支撑我们的观点,我们将引用相关文献提供的实证结果和案例分析。


二、Lasso回归简介



2.1 Lasso回归的基本原理


Lasso回归,也称为最小绝对收缩和选择算子回归,是一种线性回归方法。其基本原理是在普通最小二乘法的基础上,引入L1正则化项,通过最小化目标函数来实现模型的特征选择和系数稀疏化。


Lasso回归的目标函数如下所示:minimize ||Y - Xβ||^2 + λ||β||₁其中,Y是观测值向量,X是特征矩阵,β是待估计的回归系数向量,λ是控制正则化强度的超参数。


L1正则化项λ||β||₁在目标函数中起到了关键作用。它引入了稀疏性,即使得一些特征的系数被压缩为零,从而实现了自动的特征选择。因此,Lasso回归不仅可以进行预测,还可以识别出对目标变量有重要影响的特征。


2.2 Lasso回归与普通最小二乘法区别


Lasso回归与普通最小二乘法之间存在着几个重要的区别。

  • 首先,Lasso回归通过引入L1正则化项,使得部分特征的系数变为零。这种特性使得Lasso回归能够实现特征选择,从而减少了模型的复杂度和噪声的影响。而普通最小二乘法并没有引入正则化项,无法直接进行特征选择。
  • 其次,Lasso回归的估计结果更具有解释性。由于L1正则化的存在,Lasso回归可以将不相关或冗余的特征系数置为零,只保留与目标变量相关的重要特征。这样一来,Lasso回归得到的模型更简洁、更易解释。而普通最小二乘法则会给出所有特征的系数估计值,无法过滤掉不相关特征。
  • 此外,Lasso回归适用于高维数据集。在高维情况下,特征的数量远大于样本的数量,Lasso回归能够通过特征选择来缓解维度灾难的问题。而普通最小二乘法在高维数据集中容易出现过拟合的情况。


综上所述,Lasso回归通过引入L1正则化项,实现了特征选择和系数稀疏化,与普通最小二乘法相比,在模型解释性和适应高维数据等方面具有一定的优势。


三、特征选择的方法



3.1 过滤方法


过滤方法是一种常见的特征选择方法,它通过在训练模型之前对特征进行筛选,选择那些与目标变量相关性较高的特征。以下是几种常用的过滤方法:


  • 方差阈值:方差阈值方法是通过计算特征在样本中的变化程度来进行特征选择。具体来说,计算每个特征的方差,并将方差低于某个阈值的特征排除。这种方法适用于对离散特征进行选择。
  • 互信息:互信息是衡量两个随机变量之间相互依赖程度的度量指标。在特征选择中,可以计算每个特征与目标变量之间的互信息,然后选择互信息高于某个阈值的特征。互信息方法适用于对离散或连续变量之间的关系进行选择。
  • 相关性系数:相关性系数是衡量两个变量之间线性相关程度的指标。常用的相关性系数包括皮尔逊相关系数和斯皮尔曼等级相关系数。通过计算每个特征与目标变量之间的相关性系数,可以选择与目标变量具有较高相关性的特征。相关性系数方法适用于对连续变量之间的关系进行选择。


这些过滤方法都是基于统计学原理和度量指标来进行特征选择的,它们简单直观,计算效率高,并且可以帮助筛选出与目标变量相关性较强的特征。但是过滤方法忽略了特征之间的相互作用和非线性关系,可能会无法捕捉到一些重要的特征。因此,在实际应用中,可以结合其他特征选择方法,如包裹方法和嵌入方法,以获得更准确和鲁棒的特征选择结果。


3.2 包装方法


包装方法是一种更为复杂和耗时的特征选择方法,它通过使用某个学习模型来评估特征的重要性,并根据重要性进行特征选择。以下是两种常见的包装方法:


  • 递归特征消除(Recursive Feature Elimination, RFE):递归特征消除是一种迭代的特征选择方法。它通过反复训练一个学习模型,并在每次迭代中排除对目标变量影响较小的特征。具体步骤如下:首先,训练一个学习模型,根据特征的重要性进行排序。然后,删除最不重要的特征,重新训练模型,并继续迭代直到达到指定的特征数目或达到停止条件。递归特征消除适用于任何学习模型,并且可以通过交叉验证来选择最佳的特征子集。
  • 基于遗传算法的特征选择:基于遗传算法的特征选择是一种优化算法,通过模拟生物进化过程来搜索最佳特征子集。这种方法将特征作为个体,通过交叉、变异和选择等操作来生成新的特征子集,并利用评估函数(如模型准确率)来评估特征子集的质量。遗传算法根据评估函数的反馈进行迭代优化,直到找到最佳的特征子集为止。基于遗传算法的特征选择可以全局搜索特征空间,并且具有较强的鲁棒性和适应性。


包装方法相对于过滤方法更为精确,能够考虑特征之间的相互作用和非线性关系。然而,由于包装方法需要多次训练模型,计算复杂度较高,并且对于大规模数据集可能不太适用。因此,在应用包装方法时需要权衡计算资源和模型性能的平衡。同时,选择合适的学习模型和评估函数也是非常重要的,以确保得到准确和稳定的特征选择结果。


3.3 嵌入方法


嵌入方法是一种将特征选择与模型训练过程相结合的方法,它通过在学习模型中嵌入特征选择来选择最佳的特征子集。以下是一个常见的嵌入方法:


  • 基于Lasso回归的特征选择:Lasso(Least Absolute Shrinkage and Selection Operator)回归是一种线性回归的扩展,它利用L1正则化项对模型的系数进行约束,从而实现特征选择。具体来说,Lasso回归通过最小化目标函数,其中包括了平方损失和L1正则化项。在优化过程中,Lasso回归会使得部分特征的系数变为0,从而实现了特征的稀疏性,剔除了对目标变量影响较小的特征。通过调节正则化参数,可以控制特征选择的程度。基于Lasso回归的特征选择适用于线性模型,它能够同时进行特征选择和模型训练,并且能够处理高维数据。


嵌入方法将特征选择与模型训练过程融合在一起,能够自动选择与目标变量相关性较强的特征。相比于过滤方法和包装方法,嵌入方法更加灵活,能够考虑到特征之间的相互作用。然而,嵌入方法通常需要更多的计算资源和时间,并且对于非线性模型可能效果不如包装方法或过滤方法。因此,在选择嵌入方法时,需要根据具体问题和数据集的特点进行权衡和选择合适的方法。


四、Lasso的特征选择流程



  • 「数据预处理」
  1. 收集并整理原始数据集。
  2. 处理缺失值、异常值和离群点。
  3. 对特征进行标准化或归一化,确保它们具有相似的尺度。


  • 「划分训练集和测试集」
  1. 将数据集划分为训练集和测试集,通常采用交叉验证的方式。


  • 「搭建Lasso回归模型」
  1. 使用训练集拟合Lasso回归模型。
  2. 在拟合过程中,通过调节正则化参数来控制特征的稀疏性。可以使用交叉验证或网格搜索等方法找到最佳的正则化参数。


  • 「特征系数选择」
  1. 根据训练好的Lasso回归模型,获取所有特征的系数。
  2. 对系数进行排序,按照绝对值从大到小排序。


  • 「特征选择」
  1. 设置一个阈值,保留系数大于阈值的特征。
  2. 可以根据先验知识和实际需求来选择阈值,也可以通过交叉验证确定最佳的阈值。


  • 「模型评估」
  1. 使用保留的特征重新训练Lasso回归模型。
  2. 使用测试集评估模型的性能,比较选择特征和原始全特征的模型性能。


五、实例演示



5.1 数据集载入


library(survival)
str(gbsg)


结果展示:


> str(gbsg)
'data.frame':   686 obs. of  10 variables:
 $ age    : int  49 55 56 45 65 48 48 37 67 45 ...
 $ meno   : int  0 1 1 0 1 0 0 0 1 0 ...
 $ size   : int  18 20 40 25 30 52 21 20 20 30 ...
 $ grade  : int  2 3 3 3 2 2 3 2 2 2 ...
 $ nodes  : int  2 16 3 1 5 11 8 9 1 1 ...
 $ pgr    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ er     : int  0 0 0 4 36 0 0 0 0 0 ...
 $ hormon : int  0 0 0 0 1 0 0 1 1 0 ...
 $ rfstime: int  1838 403 1603 177 1855 842 293 42 564 1093 ...
 $ status : Factor w/ 2 levels "0","1": 1 2 1 1 1 2 2 1 2 2 ...
age:患者年龄
meno:更年期状态(0表示未更年期,1表示已更年期)
size:肿瘤大小
grade:肿瘤分级
nodes:受累淋巴结数量
pgr:孕激素受体表达水平
er:雌激素受体表达水平
hormon:激素治疗(0表示否,1表示是)
rfstime:复发或死亡时间(以天为单位)
status:事件状态(0表示被截尾,1表示事件发生)


5.2 Lasso和特征选择


  • 「数据预处理」
colSums(is.na(gbsg))
set.seed(1234)
gbsg$status <- as.factor(gbsg$status)
# 拆分训练集和测试集
trainIndex <- sample(1:nrow(gbsg), 0.8 * nrow(gbsg))
train <- gbsg[trainIndex,]
test <- gbsg[-trainIndex,]


  • 「搭建Lasso回归模型」
# 安装并加载所需的R包
install.packages("glmnet")
library(glmnet)
x <- as.matrix(train[, c(-1,-11)]) 
y <- as.numeric(train$status)
# 计算标准化前的均值和标准差
colMeans(x)
apply(x,2,sd)
# 标准化
x = scale(x,center = T,scale = T)
# 构建模型
la_md <- glmnet(x, y, lambda=0.1, 
                family='gaussian', 
                intercept = F, alpha=1)


glmnet函数是用于构建弹性网络模型的函数,具体解释如下:

  • x:自变量矩阵,包含训练数据的特征。每一行代表一个样本,每一列代表一个特征。
  • y:因变量向量,包含训练数据的响应变量。
  • lambda:正则化参数,控制模型的复杂度。较大的lambda值会导致更多的系数为0,从而减小模型的复杂度和过拟合的风险。
  • family:指定了回归模型的误差分布。对于高斯分布(正态分布)的响应变量,可以选择'gaussian'。还有其他可选的分布类型,如二项分布('binomial')和泊松分布('poisson')等。
  • intercept:是否包括截距项。设置为TRUE表示包括截距项,设置为FALSE表示不包括截距项。
  • alpha:弹性网络的混合参数,介于0和1之间。当alpha为1时,模型为Lasso回归;当alpha为0时,模型为岭回归。


关于如何设置lambda和alpha,以及family的选择,这需要根据具体问题和数据来进行调整。一般来说:


  • lambda:可以通过交叉验证法(cross-validation)来选择合适的lambda值。函数cv.glmnet可以帮助我们进行交叉验证,选择最优的lambda值。
  • alpha:如果你对注意力集中在少数变量上,倾向于使用Lasso回归,那么可以选择较大的alpha值。如果你更希望模型保留更多有用的变量,可以选择较小的alpha值。
  • family:根据响应变量的性质和概率分布选择合适的误差分布类型。例如,如果响应变量是二分类变量,可以选择二项分布('binomial');如果响应变量是计数数据,可以选择泊松分布('poisson')。多项分布('multinomial')适用于多分类问题。


需要注意的是,这只是一些一般性的指导原则。具体的选择还要考虑数据的特点和分析目标。


  • 「Lasso筛选变量动态过程图」
# Lasso筛选变量动态过程图
la.md <- glmnet(x, y, family="gaussian", 
                intercept = F, alpha=1) 
# plot
plot(la.md,xvar = "lambda", label = F)


640.png


从图中,我们可以看出,随着lambda增大,各特征相应的也被压缩得更小,而当lambda达到一定值以后,一部分不重要的特征将被压缩为0,代表该变量已被剔除出模型,图中从左至右不断下降的曲线如同被不断增大的lambda一步一步压缩,直到压缩为0。


「对于特征的系数大小」

  • 正的系数表示该特征与响应变量之间存在正相关关系。当特征的取值增加时,响应变量的期望值也会增加。
  • 负的系数表示该特征与响应变量之间存在负相关关系。当特征的取值增加时,响应变量的期望值会减少。


「对于特征的非零系数个数」

  • 当某个特征的非零系数个数为正数时,表示该特征在模型中被选择为重要特征,并且对预测结果有显著影响。
  • 当某个特征的非零系数个数为零时,表示该特征在模型中被排除或被忽略,对预测结果没有显著影响。


需要明确的是,特征的系数大小和非零系数个数仅反映特征与响应变量之间的关系,并不能直接推断特征的实际影响或取值。具体特征对应的实际取值以及与响应变量之间的关系,还需要根据具体问题和数据背景进行进一步分析和解释。


  • 「计算出合适的lambda值」

可以通过交叉验证法(cross-validation)来选择合适的lambda值。函数cv.glmnet可以帮助我们进行交叉验证,选择最优的lambda值.


mod_cv <- cv.glmnet(x=x, y=y, family="gaussian", # 默认nfolds = 10
                    intercept = F, alpha=1)
plot(mod_cv) 
# 最小误差对应的lambda和最小误差
print(paste(mod_cv$lambda.min,
            log(mod_cv$lambda.min)))
print(paste(mod_cv$lambda.1se,
            log(mod_cv$lambda.1se)))
# 这里我们以lambda.min为最优 λ
best_lambda <- mod_cv$lambda.min
best_lambda


结果显示:

> print(paste(mod_cv$lambda.min,
+             log(mod_cv$lambda.min)))
[1] "0.093983735301881 -2.36463354038672"
> print(paste(mod_cv$lambda.1se,
+             log(mod_cv$lambda.1se)))
[1] "0.217114618245629 -1.52732987020707"

640.png


通过交叉验证,我们可以选择平均误差最小的那个λ,即mod_cvlambda.1se。从图中可以看出,λ在-3和-2之间最低,大概是-2.3左右的样子误差最小。然后从打印出的最佳lambda是0.09398374。


  • 「特征选择」
best_model <- glmnet(x, y, alpha = 1, lambda = best_lambda)
coef(best_model)


结果展示:

10 x 1 sparse Matrix of class "dgCMatrix"
                    s0
(Intercept)  1.4489051
age          .        
meno         .        
size         .        
grade        .        
nodes        .        
pgr          .        
er           .        
hormon       .        
rfstime     -0.1232434


如变量没有显示系数,即lasso回归收缩系数为零。这意味着它完全被排除在模型之外,因为它的影响力不够。系数非0的变量即为我们筛选的重要特征。


  • 「使用最终模型进行预测」
x_test <- as.matrix(test[, c(-1,-11)]) 
y_test <- as.numeric(test$status)
# 标准化
x_test = scale(x_test,center = T,scale = T)
#使用 lasso 回归模型预测
y_predicted <- predict(best_model, s = best_lambda, newx = x_test)
sst <- sum((y_test - mean(y_test))^2)
sse <- sum((y_predicted - y_test)^2)
rsq <- 1 - sse/sst
rsq


结果展示:


> rsq
[1] 0.1607887


rsq即是R²:

  • 当R²接近0时,模型无法解释响应变量的变异性,拟合程度较差,意味着模型对数据的解释能力很弱。
  • 当R²接近0.5时,模型能够解释部分响应变量的变异性,但还有很大一部分变异不能被模型解释,拟合程度一般。
  • R²大于0.6或者0.7可以作为一个相对较好的指标,在医学领域,但还需要综合考虑其他因素来评估模型的优劣
  • 当R²为1时,表示该预测模型完全解释了响应变量的变异性,即模型能够完美拟合数据


这里解释一下为什么这次的R²只有0.16,远远低于0.5,更是低于医学可接受的值,我使用的数据是二分类数据,即只有0和1是离散型变量,不是连续型的数值。所以使用R²来评价是不合理的。所以这个偏差是合理的。


六、总结



6.1 适用于连续性因子变量


Lasso回归是一种用于特征选择和预测建模的线性回归方法,通常用于连续型的数值响应变量。对于因子类型的离散响应变量,Lasso回归通常不直接适用。


对于因子类型的响应变量,通常需要使用适合离散型数据的回归模型,例如逻辑回归(Logistic Regression)或多项式回归(Multinomial Regression)。这些模型可以应用于分类问题或多类别预测问题。


逻辑回归(Logistic Regression)用于二分类问题,将因子型的响应变量映射为概率值,表示某个类别的概率。多项式回归(Multinomial Regression)则用于多分类问题,将因子型的响应变量映射为多个类别的概率分布。


需要注意的是,无论是使用Lasso回归还是其他回归方法,对于因子类型的响应变量,都需要进行适当的编码和转换,将因子变量映射为数值型变量,以便模型的计算和分析。


6.2 如何使二分类0和1如何使用Lasso回归?


如果因子类型的响应变量只有两个取值(0和1),可以将问题看作是二分类问题。在这种情况下,Lasso回归可以被用于选择与响应变量相关性最强的特征,并建立一个预测模型。


在使用Lasso回归时,需要对因子型的响应变量进行适当的编码。一种常见的编码方法是使用虚拟变量(Dummy Variable)编码。将因子型的响应变量转化为两个虚拟变量,如0表示一个类别,1表示另一个类别,然后使用Lasso回归进行建模。


虽然Lasso回归原本是用于处理连续型的数值响应变量,但通过将因子型的响应变量进行适当的编码,我们可以将其扩展到处理二分类问题。这是因为Lasso回归对特征的选择性质仍然适用。


需要注意的是,在使用Lasso回归进行二分类建模时,我们通常使用的评估指标是准确率、精确率、召回率或F1分数等,而非均方误差(Mean Squared Error)等用于度量连续型响应变量的指标。


这里是不是解释了刚才我们计算出的R²的偏低情况。如果想了解如何使用Lasso回归如何对离散型的因子变量进行特征筛选,欢迎关注和私信我,我们一起讨论学习。原创不易,如果觉得写的还行的话,请留下您的赞和再看,谢谢!


*「未经许可,不得以任何方式复制或抄袭本篇文章之部分或全部内容。版权所有,侵权必究。」

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
291 3
|
5月前
|
机器学习/深度学习 人工智能 JSON
人工智能平台PAI产品使用合集之创建特征视图时遇到报错,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
4月前
|
存储 机器学习/深度学习 人工智能
人工智能平台PAI使用问题之特征平台是否可以与Java进行对接
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
5月前
|
机器学习/深度学习 存储 人工智能
人工智能平台PAI产品使用合集之选择使用Hologres作为在线特征存储,响应延时大概在多久
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
5月前
|
机器学习/深度学习 数据采集 存储
人工智能平台PAI产品使用合集之FeatureStore是否支持推荐场景下的session特征
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
5月前
|
机器学习/深度学习 人工智能 前端开发
人工智能平台PAI产品使用合集之创建了实时特征视图,里面的数据是通过什么传入的
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
5月前
|
机器学习/深度学习 算法 C++
机器学习归一化特征编码(二)
这篇文档讨论了机器学习中的特征编码,特别是独热编码(OneHotEncoder)在处理离散变量时的作用。它指出,对于多分类变量,独热编码是常用方法,但对二分类变量通常不需要。在Python的`sklearn`库中,`OneHotEncoder`可以用来实现这一过程,并可以通过设置`drop='if_binary'`来忽略二分类变量。文档还提到了逻辑回归,解释了正则化参数`C`和`penalty`,并列举了不同的优化算法,如`liblinear`、`lbfgs`等。
|
5月前
|
机器学习/深度学习 API Python
机器学习特征降维
这篇内容概述了特征降维在机器学习中的重要性,包括三个主要方法:低方差过滤法、PCA(主成分分析)和相关系数法。低方差过滤法通过删除方差低于阈值的特征来减少无关信息;PCA通过正交变换降低数据的维数,保留大部分信息;相关系数法(如皮尔逊和斯皮尔曼相关系数)用于评估特征间的相关性,去除高度相关的特征以简化模型。这些技术有助于提高模型效率和泛化能力。
|
5月前
|
机器学习/深度学习 算法 数据处理
机器学习归一化特征编码(一)
特征缩放是机器学习预处理的关键步骤,它包括归一化和标准化。归一化通过最大最小值缩放,将数据转换到[0,1]区间,有助于梯度下降算法更快收敛,减少数值较大特征的影响。标准化则通过减去均值并除以标准差,确保数据具有零均值和单位方差,适用于关注数据分布情况的算法。例如,欧氏距离计算时,未归一化的特征可能导致模型偏向数值较大的特征。归一化能提升模型精度,尤其是当距离度量如欧式距离时。常见的实现方法有`MinMaxScaler`,它将每个特征值缩放到用户指定的范围,如[0,1]。而`StandardScaler`执行Z-Score标准化,数据分布符合标准正态分布。
|
5月前
|
机器学习/深度学习 计算机视觉
【机器学习】LoFTR:革命性图像特征批评技术等领跑者
【机器学习】LoFTR:革命性图像特征批评技术等领跑者
87 1
下一篇
无影云桌面