【机器学习】Spark ML 对数据特征进行 One-Hot 编码

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: One-Hot 编码是机器学习中将离散特征转换为数值表示的方法,每个取值映射为一个二进制向量,常用于避免特征间大小关系影响模型。Spark ML 提供 OneHotEncoder 进行编码,输入输出列可通过 `inputCol` 和 `outputCol` 参数设置。在示例中,先用 StringIndexer 对类别特征编码,再用 OneHotEncoder 转换,最后展示编码结果。注意 One-Hot 编码可能导致高维问题,可结合实际情况选择编码方式。

什么是 One-Hot 编码?

在机器学习中,一般需要对非数值型的特征进行编码处理,将其转化为数值型的特征。其中,One-Hot 编码是一种常见的特征编码方式。

One-Hot 编码是将一个离散特征的每个取值映射为一个唯一的整数编号,并将该编号表示成一个二进制向量的形式。具体来说,对于一个有 $k$ 个不同取值的离散特征,其 One-Hot 编码将会得到一个 $k$ 维的向量,其中只有一个元素为 1,其余元素为 0,该元素的下标对应着特征取值的编号。

例如,对于一个颜色特征,其可能的取值为红、绿、蓝三种,可以将其编码为:

  • 红色:[1, 0, 0]

  • 绿色:[0, 1, 0]

  • 蓝色:[0, 0, 1]

为什么需要 One-Hot 编码?

One-Hot 编码主要用于将离散特征转化为数值特征,并且避免了特征之间的大小关系,方便在机器学习模型中使用。

  1. 避免数值型特征带来的大小关系:如果对于一个本质上是离散的特征,使用数值型的编码方式,就可能会导致不同取值之间带来了大小关系,这可能会影响机器学习模型的训练效果。而使用 One-Hot 编码,每个取值都是独立的,不存在大小关系,不会对模型产生影响。

  2. 方便使用分类器:在机器学习中,一些分类器(比如决策树、支持向量机等)需要将数据转换为数值型的输入,One-Hot 编码可以将离散特征转换为数值特征,方便这些分类器进行训练和预测。

  3. 增加特征的独立性:在一些情况下,原始的离散特征可能存在相关性,One-Hot 编码可以将这些特征转化为互相独立的数值特征,便于在模型中使用。

需要注意的是,对于具有大量不同取值的离散特征,进行 One-Hot 编码可能会导致特征维度爆炸,影响模型的训练效率和性能。在这种情况下,可以考虑使用其他特征编码方式,比如哈希编码。

Spark ML 之 One-Hot

在 Spark MLlib 中,我们通过 OneHotEncoder 特征转换器,用于将类别特征转换为二元向量,其实现基于 One-Hot 编码,将每个类别特征映射到唯一的整数索引,并将索引编码为二元向量。该转换器适用于逻辑回归、朴素贝叶斯等需要数值特征作为输入的算法。

OneHotEncoder 转换器有两个主要参数:

  • inputCol:需要转换为二元向量的输入列名。

  • outputCol:转换后的二元向量输出列名。

那么什么是二元向量呢?

二元向量是指只包含两个元素的向量。在数学中,一个二元向量可以表示为 $(x, y)$,其中 $x$ 和 $y$ 是向量的两个分量。这样的向量也可以被看作是二维坐标系中的一个点,其中 $x$ 和 $y$ 分别表示该点在 $x$ 轴和 $y$ 轴上的坐标。

在机器学习和数据分析中,二元向量通常被用来表示二元特征,例如某个物品是否被购买,某个用户是否点击了某个广告等等。在这种情况下,向量的两个分量通常分别表示某个特征的取值为 01

Spark ML 应用示例

maven 中引入 Spark ML 的依赖。

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>

1.创建 SparkSession 对象

        val spark: SparkSession = SparkSession
                .builder()
                .master("local[*]")
                .appName("One_Hot")
                .getOrCreate()

2.创建一个示例数据集,格式为 DataFrame

        import spark.implicits._

        val data: DataFrame = Seq(
            (0, "red"),
            (1, "blue"),
            (2, "green"),
            (3, "red"),
            (4, "red"),
            (5, "blue")
        ).toDF("id", "color")

生成了一个包含 "id""color" 两个字段的 DataFrame。其中 "color" 是一个字符串类型的类别特征,包括 "red""blue""green" 三种取值。

3.创建 StringIndexer 对象,对特征进行索引编码

        val indexer: StringIndexerModel = new StringIndexer()
                .setInputCol("color")
                .setOutputCol("index_color")
                .fit(data)

        val indexData: DataFrame = indexer.transform(data)

该编码会将 "color" 特征中的三种取值分别编码为 012

StringIndexer 是 Spark 中常用的一种特征工程模型,它的作用是将字符串类型的特征值转换成数值类型的特征值。在机器学习和数据分析中,通常需要将非数值类型的特征值转换成数值类型,这样才能够使用各种算法进行训练和预测等等。

StringIndexer 可以将某个字符串特征的所有取值按照出现的次数进行排序,并为每个取值分配一个整数编号,从而将字符串类型的特征值转换成整数类型的特征值。

例如,如果某个字符串特征的取值为 ["cat", "dog", "bird", "dog", "cat"],那么经过 StringIndexer 处理后,取值 "cat" 将被编号为 0"dog" 将被编号为 1"bird" 将被编号为 2,转换后的特征值为 [0, 1, 2, 1, 0](出现次数一样会按照 ASCII 码等规则进行编号)。

4.使用 OneHotEncoder 对特征进行 One-Hot 编码

        val encoder: OneHotEncoder = new OneHotEncoder()
                .setInputCol("index_color")
                .setOutputCol("encoded_color")
                .setDropLast(false)

        val encoderModel: OneHotEncoderModel = encoder.fit(indexData)

        val encoderData: DataFrame = encoderModel.transform(indexData)

将编码后的 "index_color" 特征作为输入,将输出列设置为 "encoded_color",对其进行 One-Hot 编码,并保留每个特征中的所有取值。

这意味着对于 "color" 特征,由于有三种取值,因此编码后的结果会生成一个长度为 3 的向量,其中每个元素对应一种取值,元素值为 1 表示该取值出现,为 0 表示该取值未出现。

setDropLast 是 OneHotEncoder 类的一个方法,它用于设置是否省略最后一个编码值,其默认值为 true
如果将 setDropLast 设置为 false,则会为每个不同的类别创建一个编码列,这样最后一个类别将具有全部 1 的编码向量。如果将其设置为 true,则会为每个不同的类别创建一个编码列,但最后一个编码列将被省略。

5.输出结果

        encoderData.show(false)

输出结果如下所示:

+---+-----+-----------+-------------+
|id |color|index_color|encoded_color|
+---+-----+-----------+-------------+
|0  |red  |0.0        |(3,[0],[1.0])|
|1  |blue |1.0        |(3,[1],[1.0])|
|2  |green|2.0        |(3,[2],[1.0])|
|3  |red  |0.0        |(3,[0],[1.0])|
|4  |red  |0.0        |(3,[0],[1.0])|
|5  |blue |1.0        |(3,[1],[1.0])|
+---+-----+-----------+-------------+

encoded_color 列是进行 One-Hot 编码完成后的特征向量。

我们拿 ID 为 0 的数据来对 encoded_color 列进行说明,即:(3,[0],[1.0]),解析如下:

  • 3 表示特征数量,即:redbluegreen

  • [0] 表示特征的编码,这里 red 的编码为 0

  • [1.0] 表示该列是否为 red(其它列对应其它的颜色),1 表示0 表示否。

6.进行向量拆分

        encoderData.withColumn("new_encoded_color",vector_to_array(col("encoded_color")))
                .show(false)

结果如下:

+---+-----+-----------+-------------+-----------------+
|id |color|index_color|encoded_color|new_encoded_color|
+---+-----+-----------+-------------+-----------------+
|0  |red  |0.0        |(3,[0],[1.0])|[1.0, 0.0, 0.0]  |
|1  |blue |1.0        |(3,[1],[1.0])|[0.0, 1.0, 0.0]  |
|2  |green|2.0        |(3,[2],[1.0])|[0.0, 0.0, 1.0]  |
|3  |red  |0.0        |(3,[0],[1.0])|[1.0, 0.0, 0.0]  |
|4  |red  |0.0        |(3,[0],[1.0])|[1.0, 0.0, 0.0]  |
|5  |blue |1.0        |(3,[1],[1.0])|[0.0, 1.0, 0.0]  |
+---+-----+-----------+-------------+-----------------+

我们拿 ID 为 0 的数据来对 encoded_colornew_encoded_color 列进行说明,它们的值分别为:(3,[0],[1.0])[1.0, 0.0, 0.0]

这里主要说明 new_encoded_color 列数据,可以发现,对 One-Hot 特征向量结果 encoded_color 进行转换后,结果为 [1.0, 0.0, 0.0],它分别对应着 [red,blue,green]

那么为什么是这个顺序呢?这就要提到我们上面的特征编码了,因为它是按照 StringIndexer 编码后的顺序进行排列的。

从数据中可以看出, ID 为 0 的数据属于 red,而不属于其它两个特征,所以结果为:[1.0, 0.0, 0.0]

One-Hot 编码,仅此而已。

相关文章
|
2月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
54 3
|
4月前
|
存储 分布式计算 Java
|
4月前
|
分布式计算 监控 大数据
如何处理 Spark 中的倾斜数据?
【8月更文挑战第13天】
260 4
|
4月前
|
存储 缓存 分布式计算
|
4月前
|
分布式计算 Apache 数据安全/隐私保护
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
58 1
|
4月前
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
152 0
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
130 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
72 0
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
45 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
101 0
下一篇
DataWorks