基于麻雀搜索算法(SSA)优化长短期记忆神经网络参数SSA-LSTM冷、热、电负荷预测(Python代码实现)

简介: 基于麻雀搜索算法(SSA)优化长短期记忆神经网络参数SSA-LSTM冷、热、电负荷预测(Python代码实现)

💥1 概述

电力负荷预测实质是时间序列预测问题,存在非平稳性和影响因素的复杂性。为了提高预测精度,解决长短期记忆神经网络(LSTM)参数选取随机性大、选取困难的问题,本文提出了一种利用麻雀搜索算法(SSA)优化长短期记忆神经网络参数的短期电力负荷预测模型(SSA-LSTM),通过历史用电负荷数据、相关影响因素数据对待预测日进行负荷预测。


本文建立SSA-LSTM模型,进行冷、热、电负荷预测。先对时间序列进行奇异谱分析,对时间序列进行分组、重构,然后利用LSTM进行冷、热、电负荷预测。


1.奇异谱分析:

取窗口大小168(24*7)

以冷负荷为例:

1690648182377.png

均方根误差和绝对平方误差都随着窗口大小的增加而增加,并没有出现论文中的极小值。论文中数据是以半小时间隔,取窗口大小336(24*7*2),即选择一周的数据长度作为窗口大小,我的数据集是以一小时为间隔,所以取窗口大小为168(24*7),得到168个特征分量。


为了识别奇异值分解的有用特征分量,绘制了奥斯丁校园的对奇异值数的对数图。从下图可以看出,前20(1到20)的特征分量的贡献率大于0.01%,在序列中做出了主要贡献。因此,取前20个特征分量重构时间序列。

   冷负荷贡献率对数图                    

                       热负荷贡献率对数图

                                                 电负荷贡献率对数图

📚2 运行结果

2.1 冷负荷:


                                                    重组前后的冷负荷序列对比图

2.2 热负荷:

                                          重组前后的热负荷序列对比图

2.3 电负荷:


                                         重组前后的电负荷序列对比图

下面只展现电负荷的:

LSTM:

1690648254519.png

SSA-LSTM:

1690648276879.png



LSTM

SSA-LSTM

RMSE

0.525

0.215

MAPE

0.392

0.169

精准度

99.19%

99.66%


论文是对电负荷进行预测,仅仅利用历史负荷数据进行预测,变量单一,不能充分挖掘数据的高维特征,无法适用于综合能源系统的多元负荷。由于综合能源系统集成了不同种类的能源形式,存在不同类型能源的耦合,因此效仿电力系统采取单一模型预测的方式,很难达到准确和可靠的效果,如现有研究利用卷积神经网络等方法作为特征提取器从输入数据中提取隐含的更具代表的特征信息,然后进行预测,取得了很好的效果。


因此,在基于LSTM-奇异谱分析的电力负荷预测模型的基础上,考虑冷、热、电负荷历史负荷数据之间的相关性和各项影响因素,加上奇异谱分析得到的与冷、热、电负荷关联度高的特征分量一起作为输入训练模型。这样理论上可以更快的提取冷、热、电负荷的高维特征,提高预测的精度。


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]赵婧宇,池越,周亚同.基于SSA-LSTM模型的短期电力负荷预测[J].电工电能新技术,2022,41(06):71-79.

🌈4 Python代码、数据

相关文章
|
17天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
105 0
|
29天前
|
机器学习/深度学习 并行计算 算法
粒子群算法优化RBF神经网络的MATLAB实现
粒子群算法优化RBF神经网络的MATLAB实现
247 123
|
2月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
|
4月前
|
机器学习/深度学习 算法
PSO和GA优化BP神经网络参数
PSO和GA优化BP神经网络参数
114 5
|
17天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
28天前
|
机器学习/深度学习 传感器 算法
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
146 7
|
17天前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
|
17天前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)

热门文章

最新文章

推荐镜像

更多