C++ 重载运算符和重载函数
C++ 允许在同一作用域中的某个函数和运算符指定多个定义,分别称为函数重载和运算符重载。
重载声明是指一个与之前已经在该作用域内声明过的函数或方法具有相同名称的声明,但是它们的参数列表和定义(实现)不相同。
当您调用一个重载函数或重载运算符时,编译器通过把您所使用的参数类型与定义中的参数类型进行比较,决定选用最合适的定义。选择最合适的重载函数或重载运算符的过程,称为重载决策。
C++ 中的函数重载
在同一个作用域内,可以声明几个功能类似的同名函数,但是这些同名函数的形式参数(指参数的个数、类型或者顺序)必须不同。您不能仅通过返回类型的不同来重载函数。
下面的实例中,同名函数 print() 被用于输出不同的数据类型:
实例
#include <iostream> using namespace std; class printData { public: void print(int i) { cout << "整数为: " << i << endl; } void print(double f) { cout << "浮点数为: " << f << endl; } void print(char c[]) { cout << "字符串为: " << c << endl; } }; int main(void) { printData pd; // 输出整数 pd.print(5); // 输出浮点数 pd.print(500.263); // 输出字符串 char c[] = "Hello C++"; pd.print(c); return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
整数为: 5 浮点数为: 500.263 字符串为: Hello C++
C++ 中的运算符重载
您可以重定义或重载大部分 C++ 内置的运算符。这样,您就能使用自定义类型的运算符。
重载的运算符是带有特殊名称的函数,函数名是由关键字 operator 和其后要重载的运算符符号构成的。与其他函数一样,重载运算符有一个返回类型和一个参数列表。
Box operator+(const Box&);
声明加法运算符用于把两个 Box 对象相加,返回最终的 Box 对象。大多数的重载运算符可被定义为普通的非成员函数或者被定义为类成员函数。如果我们定义上面的函数为类的非成员函数,那么我们需要为每次操作传递两个参数,如下所示:
Box operator+(const Box&, const Box&);
下面的实例使用成员函数演示了运算符重载的概念。在这里,对象作为参数进行传递,对象的属性使用 this 运算符进行访问,如下所示:
实例
#include <iostream> using namespace std; class Box { public: double getVolume(void) { return length * breadth * height; } void setLength( double len ) { length = len; } void setBreadth( double bre ) { breadth = bre; } void setHeight( double hei ) { height = hei; } // 重载 + 运算符,用于把两个 Box 对象相加 Box operator+(const Box& b) { Box box; box.length = this->length + b.length; box.breadth = this->breadth + b.breadth; box.height = this->height + b.height; return box; } private: double length; // 长度 double breadth; // 宽度 double height; // 高度 }; // 程序的主函数 int main( ) { Box Box1; // 声明 Box1,类型为 Box Box Box2; // 声明 Box2,类型为 Box Box Box3; // 声明 Box3,类型为 Box double volume = 0.0; // 把体积存储在该变量中 // Box1 详述 Box1.setLength(6.0); Box1.setBreadth(7.0); Box1.setHeight(5.0); // Box2 详述 Box2.setLength(12.0); Box2.setBreadth(13.0); Box2.setHeight(10.0); // Box1 的体积 volume = Box1.getVolume(); cout << "Volume of Box1 : " << volume <<endl; // Box2 的体积 volume = Box2.getVolume(); cout << "Volume of Box2 : " << volume <<endl; // 把两个对象相加,得到 Box3 Box3 = Box1 + Box2; // Box3 的体积 volume = Box3.getVolume(); cout << "Volume of Box3 : " << volume <<endl; return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
Volume of Box1 : 210 Volume of Box2 : 1560 Volume of Box3 : 5400
五 、C++进阶 多态和数据抽象
C++ 多态
多态按字面的意思就是多种形态。当类之间存在层次结构,并且类之间是通过继承关联时,就会用到多态。
C++ 多态意味着调用成员函数时,会根据调用函数的对象的类型来执行不同的函数。
下面的实例中,基类 Shape 被派生为两个类,如下所示:
实例
#include <iostream> using namespace std; class Shape { protected: int width, height; public: Shape( int a=0, int b=0) { width = a; height = b; } int area() { cout << "Parent class area :" <<endl; return 0; } }; class Rectangle: public Shape{ public: Rectangle( int a=0, int b=0):Shape(a, b) { } int area () { cout << "Rectangle class area :" <<endl; return (width * height); } }; class Triangle: public Shape{ public: Triangle( int a=0, int b=0):Shape(a, b) { } int area () { cout << "Triangle class area :" <<endl; return (width * height / 2); } }; // 程序的主函数 int main( ) { Shape *shape; Rectangle rec(10,7); Triangle tri(10,5); // 存储矩形的地址 shape = &rec; // 调用矩形的求面积函数 area shape->area(); // 存储三角形的地址 shape = &tri; // 调用三角形的求面积函数 area shape->area(); return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
Parent class area Parent class area
导致错误输出的原因是,调用函数 area() 被编译器设置为基类中的版本,这就是所谓的静态多态,或静态链接 - 函数调用在程序执行前就准备好了。有时候这也被称为早绑定,因为 area() 函数在程序编译期间就已经设置好了。
但现在,让我们对程序稍作修改,在 Shape 类中,area() 的声明前放置关键字 virtual,如下所示:
class Shape { protected: int width, height; public: Shape( int a=0, int b=0) { width = a; height = b; } virtual int area() { cout << "Parent class area :" <<endl; return 0; } };
修改后,当编译和执行前面的实例代码时,它会产生以下结果:
Rectangle class area Triangle class area
此时,编译器看的是指针的内容,而不是它的类型。因此,由于 tri 和 rec 类的对象的地址存储在 *shape 中,所以会调用各自的 area() 函数。
正如大家所看到的,每个子类都有一个函数 area() 的独立实现。这就是多态的一般使用方式。有了多态,就可以有多个不同的类,都带有同一个名称但具有不同实现的函数,函数的参数甚至可以是相同的。
虚函数
虚函数 是在基类中使用关键字 virtual 声明的函数。在派生类中重新定义基类中定义的虚函数时,会告诉编译器不要静态链接到该函数。
我们想要的是在程序中任意点可以根据所调用的对象类型来选择调用的函数,这种操作被称为动态链接,或后期绑定。
纯虚函数
大家可能想要在基类中定义虚函数,以便在派生类中重新定义该函数更好地适用于对象,但是大家在基类中又不能对虚函数给出有意义的实现,这个时候就会用到纯虚函数。
我们可以把基类中的虚函数 area() 改写如下:
class Shape { protected: int width, height; public: Shape( int a=0, int b=0) { width = a; height = b; } // pure virtual function virtual int area() = 0; };
= 0 告诉编译器,函数没有主体,上面的虚函数是纯虚函数。
C++ 数据抽象
数据抽象是指,只向外界提供关键信息,并隐藏其后台的实现细节,即只表现必要的信息而不呈现细节。
数据抽象是一种依赖于接口和实现分离的编程(设计)技术。
让我们举一个现实生活中的真实例子,比如一台电视机,可以打开和关闭、切换频道、调整音量、添加外部组件(如喇叭、录像机、DVD 播放器),但是我们不知道它的内部实现细节,也就是说,我们并不知道它是如何通过缆线接收信号,如何转换信号,并最终显示在屏幕上。
因此,我们可以说电视把它的内部实现和外部接口分离开了,我们无需知道它的内部实现原理,直接通过它的外部接口(比如电源按钮、遥控器、声量控制器)就可以操控电视。
现在,让我们言归正传,就 C++ 编程而言,C++ 类为数据抽象提供了可能。它们向外界提供了大量用于操作对象数据的公共方法,也就是说,外界实际上并不清楚类的内部实现。
例如,程序可以调用 sort() 函数,而不需要知道函数中排序数据所用到的算法。实际上,函数排序的底层实现会因库的版本不同而有所差异,只要接口不变,函数调用就可以照常工作。
在 C++ 中,我们使用类来定义我们自己的抽象数据类型(ADT)。可以使用类 iostream 的 cout 对象来输出数据到标准输出,如下所示:
实例
#include <iostream> using namespace std; int main( ) { cout << "Hello C++" <<endl; return 0; }
在这里,暂时不需要理解 cout 是如何在用户的屏幕上显示文本。只需要知道公共接口即可,cout 的底层实现可以自由改变。
访问标签强制抽象
在 C++ 中,我们使用访问标签来定义类的抽象接口。一个类可以包含零个或多个访问标签:
- 使用公共标签定义的成员都可以访问该程序的所有部分。一个类型的数据抽象视图是由它的公共成员来定义的。
- 使用私有标签定义的成员无法访问到使用类的代码。私有部分对使用类型的代码隐藏了实现细节。
访问标签出现的频率没有限制。每个访问标签指定了紧随其后的成员定义的访问级别。指定的访问级别会一直有效,直到遇到下一个访问标签或者遇到类主体的关闭右括号为止。
数据抽象的好处
数据抽象有两个重要的优势:
- 类的内部受到保护,不会因无意的用户级错误导致对象状态受损。
- 类实现可能随着时间的推移而发生变化,以便应对不断变化的需求,或者应对那些要求不改变用户级代码的错误报告。
如果只在类的私有部分定义数据成员,编写该类的作者就可以随意更改数据。如果实现发生改变,则只需要检查类的代码,看看这个改变会导致哪些影响。
如果数据是公有的,则任何直接访问旧表示形式的数据成员的函数都可能受到影响。
数据抽象的实例
C++ 程序中,任何带有公有和私有成员的类都可以作为数据抽象的实例。请看下面的实例:
实例
#include <iostream> using namespace std; class Adder{ public: // 构造函数 Adder(int i = 0) { total = i; } // 对外的接口 void addNum(int number) { total += number; } // 对外的接口 int getTotal() { return total; }; private: // 对外隐藏的数据 int total; }; int main( ) { Adder a; a.addNum(10); a.addNum(20); a.addNum(30); cout << "Total " << a.getTotal() <<endl; return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
Total 60
上面的类把数字相加,并返回总和。公有成员 addNum 和 getTotal 是对外的接口,用户需要知道它们以便使用类。私有成员 total 是用户不需要了解的,但又是类能正常工作所必需的。
C++ 数据封装
所有的 C++ 程序都有以下两个基本要素:
- 程序语句(代码):这是程序中执行动作的部分,它们被称为函数。
- 程序数据:数据是程序的信息,会受到程序函数的影响。
封装是面向对象编程中的把数据和操作数据的函数绑定在一起的一个概念,这样能避免受到外界的干扰和误用,从而确保了安全。数据封装引申出了另一个重要的 OOP 概念,即数据隐藏。
数据封装是一种把数据和操作数据的函数捆绑在一起的机制,数据抽象是一种仅向用户暴露接口而把具体的实现细节隐藏起来的机制。
C++ 通过创建类来支持封装和数据隐藏(public、protected、private)。我们已经知道,类包含私有成员(private)、保护成员(protected)和公有成员(public)成员。默认情况下,在类中定义的所有项目都是私有的。例如:
class Box { public: double getVolume(void) { return length * breadth * height; } private: double length; // 长度 double breadth; // 宽度 double height; // 高度 };
变量 length、breadth 和 height 都是私有的(private)。这意味着它们只能被 Box 类中的其他成员访问,而不能被程序中其他部分访问。这是实现封装的一种方式。
为了使类中的成员变成公有的(即,程序中的其他部分也能访问),必须在这些成员前使用 public 关键字进行声明。所有定义在 public 标识符后边的变量或函数可以被程序中所有其他的函数访问。
把一个类定义为另一个类的友元类,会暴露实现细节,从而降低了封装性。理想的做法是尽可能地对外隐藏每个类的实现细节。
数据封装的实例
C++ 程序中,任何带有公有和私有成员的类都可以作为数据封装和数据抽象的实例。请看下面的实例:
实例
#include <iostream> using namespace std; class Adder{ public: // 构造函数 Adder(int i = 0) { total = i; } // 对外的接口 void addNum(int number) { total += number; } // 对外的接口 int getTotal() { return total; }; private: // 对外隐藏的数据 int total; }; int main( ) { Adder a; a.addNum(10); a.addNum(20); a.addNum(30); cout << "Total " << a.getTotal() <<endl; return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
Total 60
上面的类把数字相加,并返回总和。公有成员 addNum 和 getTotal 是对外的接口,用户需要知道它们以便使用类。私有成员 total 是对外隐藏的,用户不需要了解它,但它又是类能正常工作所必需的。
六、c++进阶 模板和stl入门
C++ 模板
模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。
模板是创建泛型类或函数的蓝图或公式。库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念。
每个容器都有一个单一的定义,比如 向量,我们可以定义许多不同类型的向量,比如 vector 或 vector 。
您可以使用模板来定义函数和类,接下来让我们一起来看看如何使用。
函数模板
模板函数定义的一般形式如下所示:
template <class type> ret-type func-name(parameter list) { // 函数的主体 }
在这里,type 是函数所使用的数据类型的占位符名称。这个名称可以在函数定义中使用。
下面是函数模板的实例,返回两个数中的最大值:
实例
#include <iostream> #include <string> using namespace std; template <typename T> inline T const& Max (T const& a, T const& b) { return a < b ? b:a; } int main () { int i = 39; int j = 20; cout << "Max(i, j): " << Max(i, j) << endl; double f1 = 13.5; double f2 = 20.7; cout << "Max(f1, f2): " << Max(f1, f2) << endl; string s1 = "Hello"; string s2 = "World"; cout << "Max(s1, s2): " << Max(s1, s2) << endl; return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
Max(i, j): 39 Max(f1, f2): 20.7 Max(s1, s2): World类模板
正如我们定义函数模板一样,我们也可以定义类模板。泛型类声明的一般形式如下所示:
template <class type> class class-name { . . . }
在这里,type 是占位符类型名称,可以在类被实例化的时候进行指定。您可以使用一个逗号分隔的列表来定义多个泛型数据类型。
下面的实例定义了类 Stack<>,并实现了泛型方法来对元素进行入栈出栈操作:
实例
#include <iostream> #include <vector> #include <cstdlib> #include <string> #include <stdexcept> using namespace std; template <class T> class Stack { private: vector<T> elems; // 元素 public: void push(T const&); // 入栈 void pop(); // 出栈 T top() const; // 返回栈顶元素 bool empty() const{ // 如果为空则返回真。 return elems.empty(); } }; template <class T> void Stack<T>::push (T const& elem) { // 追加传入元素的副本 elems.push_back(elem); } template <class T> void Stack<T>::pop () { if (elems.empty()) { throw out_of_range("Stack<>::pop(): empty stack"); } // 删除最后一个元素 elems.pop_back(); } template <class T> T Stack<T>::top () const { if (elems.empty()) { throw out_of_range("Stack<>::top(): empty stack"); } // 返回最后一个元素的副本 return elems.back(); } int main() { try { Stack<int> intStack; // int 类型的栈 Stack<string> stringStack; // string 类型的栈 // 操作 int 类型的栈 intStack.push(7); cout << intStack.top() <<endl; // 操作 string 类型的栈 stringStack.push("hello"); cout << stringStack.top() << std::endl; stringStack.pop(); stringStack.pop(); } catch (exception const& ex) { cerr << "Exception: " << ex.what() <<endl; return -1; } }
当上面的代码被编译和执行时,它会产生下列结果:
7 hello Exception: Stack<>::pop(): empty stack
C++ STL 入门
上面我们已经了解了 C++ 模板的概念。C++ STL(标准模板库)是一套功能强大的 C++ 模板类,提供了通用的模板类和函数,这些模板类和函数可以实现多种流行和常用的算法和数据结构,如向量、链表、队列、栈。
C++ 标准模板库的核心包括以下三个组件:
组件
描述 | |
容器(Containers) |
容器是用来管理某一类对象的集合。C++ 提供了各种不同类型的容器,比如 deque、list、vector、map 等。 |
算法(Algorithms) |
算法作用于容器。它们提供了执行各种操作的方式,包括对容器内容执行初始化、排序、搜索和转换等操作。 |
迭代器(iterators) |
迭代器用于遍历对象集合的元素。这些集合可能是容器,也可能是容器的子集。 |
这三个组件都带有丰富的预定义函数,帮助我们通过简单的方式处理复杂的任务。
下面的程序演示了向量容器(一个 C++ 标准的模板),它与数组十分相似,唯一不同的是,向量在需要扩展大小的时候,会自动处理它自己的存储需求:
实例
#include <iostream> #include <vector> using namespace std; int main() { // 创建一个向量存储 int vector<int> vec; int i; // 显示 vec 的原始大小 cout << "vector size = " << vec.size() << endl; // 推入 5 个值到向量中 for(i = 0; i < 5; i++){ vec.push_back(i); } // 显示 vec 扩展后的大小 cout << "extended vector size = " << vec.size() << endl; // 访问向量中的 5 个值 for(i = 0; i < 5; i++){ cout << "value of vec [" << i << "] = " << vec[i] << endl; } // 使用迭代器 iterator 访问值 vector<int>::iterator v = vec.begin(); while( v != vec.end()) { cout << "value of v = " << *v << endl; v++; } return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
vector size = 0 extended vector size = 5 value of vec [0] = 0 value of vec [1] = 1 value of vec [2] = 2 value of vec [3] = 3 value of vec [4] = 4 value of v = 0 value of v = 1 value of v = 2 value of v = 3 value of v = 4
关于上面实例中所使用的各种函数,有几点要注意:
- push_back( ) 成员函数在向量的末尾插入值,如果有必要会扩展向量的大小。
- size( ) 函数显示向量的大小。
- begin( ) 函数返回一个指向向量开头的迭代器。
- end( ) 函数返回一个指向向量末尾的迭代器。
PS:如果觉得我的分享不错,欢迎大家随手点赞、转发、在看。