[MGeo应用]使用python+AI模型拆分Excel中地址的省市区街道

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: [MGeo应用]使用python+AI模型拆分Excel中地址的省市区街道

在处理人员登记信息或者收货地址管理时,常常需要把地址里的省市区镇拆分出来方便后续分类管理。

例如对于地址“上海市静安区乌鲁木齐中路12号”,单独拆分出“上海市/静安区”。

目前一些基于规则的方法无法覆盖到所有情况,比如:

  • 通过“xx省”“xx市”后缀来找省市区的,当缺少该后缀便无法工作。例如:上海静安华山医院,按照后缀是找不到上海和静安的。
  • 通过字符长度来切割的,例如设置省的长度为3,当遇到长度不同的省市区名称变会出错。例如:内蒙古自治区,按照长度切割,内蒙古会被识别为省,自治区会被识别为市。

我们最近开源了一个地址AI模型MGeo系列,包括一个预训练底座和多个下游任务

其中一个下游任务就是识别地址里面的各个元素,包括省、市、区、街道。模型具有很高的准确率,因此适合来解决上述问题。

模型的安装使用也比较简单。

首先需要安装python3.7的环境,没有anaconda的可以直接下载安装python3.7:

conda create -n py37testmaas python=3.7
conda activate py37testmaas

安装相关依赖:

cpu机器:pip install cryptography==3.4.8  tensorflow==1.15.5  torch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 openpyxl
gpu机器:pip install cryptography==3.4.8  tensorflow-gpu==1.15.5  torch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 openpyxl

安装modelscope:

pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html

确认下modelscope版本大于等于1.2.0:

pip freeze | grep modelscope

测试下模型是否可用:

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
task = Tasks.token_classification
model = 'damo/mgeo_geographic_elements_tagging_chinese_base'
inputs = '浙江省杭州市余杭区阿里巴巴西溪园区'
pipeline_ins = pipeline(task=task, model=model)
print(pipeline_ins(input=inputs))
#输出 {'output': [{'type': 'prov', 'start': 0, 'end': 3, 'span': '浙江省'}, {'type': 'city', 'start': 3, 'end': 6, 'span': '杭州市'},{'type': 'district', 'start': 6, 'end': 9, 'span': '余杭区'}, {'type': 'poi', 'start': 9, 'end': 17, 'span': '阿里巴巴西溪园区'}]}

可以看到这个模型能将地址里面的省市区街道都拆分出来。剩下的工作便是读取excel内容、识别省市区街道、保存识别结果了。

我们将需要处理的文件保存在test.xlsx里面:

image.png

创建并保存自动处理脚本process.py:

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import pandas as pd
def get_pcdt(inputs):
task = Tasks.token_classification
model = 'damo/mgeo_geographic_elements_tagging_chinese_base'
pipeline_ins = pipeline(task=task, model=model)
res = pipeline_ins(input=inputs)
pcdt = {'prov': '', 'city': '', 'district': '', 'town': ''}
for r in res['output']:
if r['type'] in pcdt:
pcdt[r['type']] = r['span']
return pcdt
df = pd.read_excel('test.xlsx')
total_pcdt = {'prov': [], 'city': [], 'district': [], 'town': []}
for line in df['address']:
res = get_pcdt(line)
for k in res:
total_pcdt[k].append(res[k])
for k in total_pcdt:
df[k] = total_pcdt[k]
df.to_excel('test_out.xlsx', index=False, header=True)

运行process.py:

python process.py

程序自动运行结束后我们从test_out.xlsx可以得到省市区街道的抽取结果:

image.png

使用测试数据与源代码可以访问MGeoExample/拆分Excel中地址的省市区街道 at main · PhantomGrapes/MGeoExample · GitHub

相关文章
|
4天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
30 5
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
29 1
|
7天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
36 10
|
7天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
6天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
8天前
|
传感器 人工智能 算法
AI在农业中的应用:精准农业的发展
随着科技的发展,人工智能(AI)在农业领域的应用日益广泛,尤其在精准农业方面取得了显著成效。精准农业通过GPS、GIS、遥感技术和自动化技术,实现对农业生产过程的精确监测和控制,提高产量和品质,降低成本和环境影响。AI在作物生长监测、气候预测、智能农机、农产品品质检测和智能灌溉等方面发挥重要作用,推动农业向智能化、高效化和可持续化方向发展。尽管面临技术集成、数据共享等挑战,但未来前景广阔。
|
6天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
21 2
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型

热门文章

最新文章