ModelScope开源mPLUG模型带你一键体验大火的视觉问答能力(1)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: ModelScope开源mPLUG模型带你一键体验大火的视觉问答能力

快速玩转起来

只需区区下面几行代码,就可以轻松玩起来,打开mPLUG模型官方文档,直接点击右上角的Notebook按钮,官方通过Notebook提供了已配置好的带GPU的环境,可薅免费V100 GPU资源使用,只需要在Notebook里输入提供的几行代码,就可以快速体验mPLUG开放域视觉问答效果了!

# 进入python

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

# VQA视觉问答任务

p_vqa = pipeline('visual-question-answering', 'damo/mplug_visual-question-answering_coco_large_en')
print(p_vqa({'image':'https://alice-open.oss-cn-zhangjiakou.aliyuncs.com/mPLUG/image_mplug_vqa_5.jpg','question':'what name is this guy?'}))
# {'text': 'dali'}, 返回答案:dali

# Caption看图说话任务

p_caption = pipeline(Tasks.image_captioning, 'damo/mplug_image-captioning_coco_large_en')
print(p_caption('https://alice-open.oss-cn-zhangjiakou.aliyuncs.com/mPLUG/image_captioning.png'))
# {'caption': 'a young man making a mean face with his fists'}

想在本地下载使用的话,也可以参考modelscope官方文档,点击快速使用栏,按照教程安装ModelScope相关环境和跑示例代码,在pip安装环境可参考环境安装这一节,如果遇到配置问题建议用conda新建一个clean环境安装相应库,下载时间稍微有点长,请耐心等待。pip install的时候有些包下载特别慢,这里小编也发现一个小诀窍,建议在国内可以通过"-i https://pypi.tuna.tsinghua.edu.cn/simple" 的命令行选项来加速pip包安装,例如:

pip install "modelscope[multi-modal]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html-i https://pypi.tuna.tsinghua.edu.cn/simple

小编马上开始测试模型!就拿小编最近去西双版纳的图片来测试!!!西双版纳是中国热带生态系统保存最完整的地区,素有“植物王国”、“动物王国”、“生物基因库”、“植物王国桂冠上的一颗绿宝石”等美称。同时西双版纳还有好多好吃的,舂鸡脚、泰国菜、孔雀宴、老挝冰咖啡、小菠萝、傣式烧烤等等。

测完之后,真的是全知全能的问答模型,无论问物种、问数量、问位置,模型都能回答出来。图中小编刚认识的睡莲(lily pads)--泰国的国花都是精准无比,还有图4也能把背景中大象也能识别出来,厉害了!

Notebook上手体验

遇到这么强的模型,小编当然想深刻了解一下,觉知此事要躬行嘛!其实是想自己拥有一个,将来出去玩的时候可以把导游费给省了。ModelScope也为我考虑到了,右上角「在Notebook中打开」,点它!这里有CPU环境和GPU环境,看到GPU,小编眼睛都直了,这不就是和3090Ti齐名的V100,如此方便使用的GPU,羊毛党果断薅一下。同时Notebook里也集成了ModelScope的安装环境,避免了安装报错的烦恼,还有30M/s的下载网速。

测试过程非常流程,只需要会import就能实现整体流程,小编也整理了相关代码放出来可以使用!

###
!pwd
!mkdir data
!wget http://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/visual-question-answering/visual_question_answering.png -O data/visual_question_answering.png

###
from PIL import Image
image = Image.open('data/visual_question_answering.png')
image.show()

###
# 运行代码
from PIL import Image
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
model_id = 'damo/mplug_visual-question-answering_coco_large_en'
input_vqa = {
    'image': Image.open('data/visual_question_answering.png'),
    'question': 'What is grown on the plant?',
}
pipeline_vqa = pipeline(Tasks.visual_question_answering, model=model_id)
print(pipeline_vqa(input_vqa))

为了方便大家,小编也把运行中间步骤展示出来,这样无论是小白还是新手,都可以玩起来了。

离部署只差最后一步了,用gradio就可以满足你,按照文档提示即可完成。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
人工智能 物联网 大数据
开源大赛 | 第七届CCF开源创新大赛ModelScope赛题解读
第七届CCF开源创新大赛由CCF主办,长沙理工大学和CCF开源发展委员会联合承办,以国家“十四五”开源生态发展战略布局为导向,重点关注人工智能、大数据、芯片设计、物联网等领域的开源软件,旨在创建一个展示、交流和合作的平台,激发开源创新精神,培养开源人才,并促进高质量的开源生态系统建设。
|
3月前
|
人工智能 开发框架 物联网
赢万元奖金 | 第七届CCF开源创新大赛ModelScope开源模型应用挑战赛开启报名!
第七届CCF开源创新大赛(后简称“大赛”) 由中国计算机学会(CCF)主办,长沙理工大学、CCF开源发展委员会联合承办。
|
5月前
|
人工智能 开发工具 Swift
ModelScope联手OpenDataLab:直接调用7000+开源数据集,赋能AI模型加速研发
魔搭社区和OpenDatalab浦数合作,共同开启一场模型与数据的深度融合,旨在为中国开发者打造更加高效、开放的AI体验。
|
6月前
|
开发框架 API 决策智能
ModelScope-Agent框架再升级!新增一键配置多人聊天,配套开源多智能体数据集和训练
ModelScope-Agent是魔搭社区推出的适配开源大语言模型(LLM)的AI Agent(智能体)开发框架,借助ModelScope-Agent,所有开发者都可基于开源 LLM 搭建属于自己的智能体应用。在最新升级完Assistant API和Tool APIs之后,我们又迎来了多智能体聊天室的升级,通过几分钟快速配置即可搭建一个全新的聊天室。
|
6月前
|
机器学习/深度学习 人工智能 Swift
PAI x ModelScope: 在PAI使用ModelScope模型
在当前的人工智能领域,特别是大语言模型、文生图等领域,基于预训练模型完成机器学习模型的开发部署已成为重要的应用范式,开发者们依赖于这些先进的开源预训练模型,以简化机器学习应用的开发并加速创新。
|
6月前
|
机器学习/深度学习 测试技术 TensorFlow
ModelScope模型使用与EAS部署调用
本文以魔搭数据的模型为例,演示在DSW实例中如何快速调用模型,然后通过Python SDK将模型部署到阿里云PAI EAS服务,并演示使用EAS SDK实现对服务的快速调用,重点针对官方关于EAS模型上线后示例代码无法正常调通部分进行了补充。
236 2
|
6月前
|
自然语言处理
在ModelScope中,你可以通过设置模型的参数来控制输出的阈值
在ModelScope中,你可以通过设置模型的参数来控制输出的阈值
168 1
|
6月前
|
API 语音技术
ModelScope-FunASR**有支持热词又支持时间戳的模型**。
【2月更文挑战第30天】ModelScope-FunASR**有支持热词又支持时间戳的模型**。
216 2
|
6月前
|
人工智能 API 决策智能
Modelscope结合α-UMi:基于Modelscope的多模型协作Agent
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
|
6月前
|
文字识别 并行计算 语音技术
ModelScope问题之下载模型文件报错如何解决
ModelScope模型报错是指在使用ModelScope平台进行模型训练或部署时遇到的错误和问题;本合集将收集ModelScope模型报错的常见情况和排查方法,帮助用户快速定位问题并采取有效措施。
841 3
下一篇
无影云桌面