进阶C语言——数据的存储(下)

简介: 进阶C语言——数据的存储(下)

练习题

#include <stdio.h>
int main()
{
    char a= -1;
    signed char b=-1;
    unsigned char c=-1;
    printf("a=%d,b=%d,c=%d",a,b,c);
    return 0;
}

我们的char默认也是有符号的至少在vs当中,不过少数的编译器中可能会出现无符号,整型家族中就char没有明确规定

第一个和第二个很好看,就是按原数字输出,但是我们无符号输出的应该是255,因为我们的-1的补码是11111111,然而无符号默认就是正数,正数的补码就是原码,所以我们打印的是十进制数,下面看结果

#include <stdio.h>
int main()
{
  char a = -128;
  printf("%u\n", a);
  return 0;
}

我们看这两个图就可以明白其实我们的结果就是上面那个二进制位

分析

首先我们的-128是个四字节的整型,然后我们存储到一个字节当中的char,首先会发生截断-128的原码是1000 0000 0000 0000 0000 0000 1000 0000

反码就是1111 1111 1111 1111 1111 1111 0111 1111

补码就是1111 1111 1111 1111 1111 1111 1000 0000

那我们截断就是1000 0000

在按照我们的无符号整型输出 那么要整型提升 提升是符号位,所以就变成

1111 1111 1111 1111 1111 1111 1000 0000

所以我们通过计算机算出结果,其中的第32位可不是符号位

3.
#include <stdio.h>
int main()
{
    char a = 128;
    printf("%u\n",a);
    return 0;
}

这题就更简单了,我们的正数128的二进制是1111 1111 1111 1111 1111 1111 1000 0000

我们发生截断就是1000 0000,那我们在继续整型提升就是 1111 1111 1111 1111 1111 1111 1000 0000,

再按照无符号输出,他就是一个正数,那补码就是原码,所以我们的结果就是1111 1111 1111 1111 1111 1111 1000 0000转为十进制,和上面那题答案一样

#include<stdio.h>
int main()
{
  int i = -20;
  unsigned int j= 10;
  printf("%d\n", i + j);
  //按照补码的形式进行运算,最后格式化成为有符号整数
  return 0;
}

#include<stdio.h>
int main()
{
  unsigned int i;
  for (i = 9; i >= 0; i--)
  {
    printf("%u\n", i);
  }
  return 0;
}

这题其实我们直接分析就行 9到0是正常打印,因为无符号整数就是正数,当他i–来到-1的时候,我们还是认为它是一个无符号数,这样的话就会进入死循环,且是从2的32方往下减,减到0的时候又来到-1,因此是死循环

int main()
{
    char a[1000];
    int i;
    for(i=0; i<1000; i++)
   {
        a[i] = -1-i;
   }
    printf("%d",strlen(a));
    return 0;
}

这里我们也可以直接思考,有符号的char范围是-128–127 ,而我们的strlen是统计\0前面的长度,这样的话,我们a[i]第一个是-1 然是是-2 一直下去到-128 然后会变成127 一直循环到0,strlen遇到0结束

#include <stdio.h>
unsigned char i = 0;
int main()
{
  for (i = 0; i <= 255; i++)
  {
    printf("hello world\n");
  }
  return 0;
}

死循环 我们的无符号char 范围是0到255 当等于256的时候会强制变成0,所以进入死循环

3. 浮点型在内存中的存储

常见的浮点数:

3.14159

1E10

浮点数家族包括: float、double、long double 类型。

浮点数表示的范围,float.h的定义

3.1 一个例子

int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0;
}

我们可以看到我们的结果是不是有点令人意想不到,这是为什么呢,原因是我们的浮点数存储和整型的存储方式不一样,那让我们来探究一下吧

3.2 浮点数存储规则

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

详细解读:

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

-1)^S * M * 2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。

M表示有效数字,大于等于1,小于2。

2^E表示指数位。左移为正,右移为负

举例来说:

十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的

xxxxxx部分。比如保存1.01的时

候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位

浮点数为例,留给M只有23位,

将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)

这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们

知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E从内存中取出还可以再分成三种情况

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将

有效数字M前加上第一位的1。

比如:

0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为

1.0*2^(-1),其阶码为-1+127=126,表示为

01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进

制表示形式为:0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,

有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于

0的很小的数字

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

好了,关于浮点数的表示规则,就说到这里。

那我们现在来解释前面的题目

#include<stdio.h>
int main()
{
  int n = 9;
  //00000000000000000000000000001001--9的补码
  float* pFloat = (float*)&n;
  printf("n的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  //当我们用浮点数来打印我们的9的时候
  //0 就是我们的符号位
  //我们的后八位都是0 默认E就是-126
  //那我们的写成浮点数就是 (-1)^0*0.00000000000000000001001*2^-126
  //最终结果就是0.000000
  *pFloat = 9.0;
  printf("num的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  //9我们我们用浮点数存储就是(-1)^0*1.001*2^3
  //0 10000010 001 0000 0000 0000 0000 0000
  //变成我们的十进制就是1091567616
  return 0;
}

解释都写在代码当中了,那我们今天的分享就到这,谢谢大家!!!


相关文章
|
2月前
|
存储 编译器 C语言
C语言存储类详解
在 C 语言中,存储类定义了变量的生命周期、作用域和可见性。主要包括:`auto`(默认存储类,块级作用域),`register`(建议存储在寄存器中,作用域同 `auto`,不可取地址),`static`(生命周期贯穿整个程序,局部静态变量在函数间保持值,全局静态变量限于本文件),`extern`(声明变量在其他文件中定义,允许跨文件访问)。此外,`typedef` 用于定义新数据类型名称,提升代码可读性。 示例代码展示了不同存储类变量的使用方式,通过两次调用 `function()` 函数,观察静态变量 `b` 的变化。合理选择存储类可以优化程序性能和内存使用。
158 82
|
1月前
|
存储 C语言 C++
深入C语言,发现多样的数据之枚举和联合体
深入C语言,发现多样的数据之枚举和联合体
深入C语言,发现多样的数据之枚举和联合体
|
1月前
|
存储 C语言
深入C语言内存:数据在内存中的存储
深入C语言内存:数据在内存中的存储
|
1月前
|
C语言
回溯入门题,数据所有排列方式(c语言)
回溯入门题,数据所有排列方式(c语言)
|
2月前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
402 8
|
1月前
|
存储 C语言
C语言中的浮点数存储:深入探讨
C语言中的浮点数存储:深入探讨
|
2月前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
2月前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
2月前
|
C语言
C语言程序设计核心详解 第二章:数据与数据类型 4种常量详解 常见表达式详解
本文详细介绍了C语言中的数据与数据类型,包括常量、变量、表达式和函数等内容。常量分为整型、实型、字符型和字符串常量,其中整型常量有十进制、八进制和十六进制三种形式;实型常量包括小数和指数形式;字符型常量涵盖常规字符、转义字符及八进制、十六进制形式;字符串常量由双引号括起。变量遵循先定义后使用的规则,并需遵守命名规范。函数分为标准函数和自定义函数,如`sqrt()`和`abs()`。表达式涉及算术、赋值、自增自减和逗号运算符等,需注意运算符的优先级和结合性。文章还介绍了强制类型转换及隐式转换的概念。
|
2月前
|
存储 算法 C语言
C语言手撕数据结构代码_顺序表_静态存储_动态存储
本文介绍了基于静态和动态存储的顺序表操作实现,涵盖创建、删除、插入、合并、求交集与差集、逆置及循环移动等常见操作。通过详细的C语言代码示例,展示了如何高效地处理顺序表数据结构的各种问题。
下一篇
无影云桌面