【算法排序】动态规划

简介: 【算法排序】动态规划

一、动态规划思想

将待求问题划分为若干个子问题,按划分的顺序求解子阶段问题,前一个子问题的解,为后一个子问题的求解提供了有用的信息(最优子结构)。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其它局部解。依次解决各个子问题,最后求出原问题的最优解

二、动态规划与分治法的区别

1、共同点

二者都是求原问题具有最优子结构性质,都是将原问题分而治之,分解成若干个规模较小的子问题,然后将子问题的解合并,形成原问题的解

2、不同点

1、分治法:将问题分解成子问题后,通常是将子问题的解合并起来得到原问题的解

2、动态规划法:是先解决子问题,将子问题的解保存下来,最后根据子问题的解计算得到原问题的解

三、动态规划特征

1、最优子结构

问题的最优解是由最优子问题的最优解推出的,也就是问题的最优解包含了子问题的最优解

如图:若路线I和J是A到C的最优路径,则根据最优化原理,路线J必是从B到C的最优路线。

反证法证明: 假设有另一路径J是B到C的最优路径,则A到C的路径取I和J比I和J更优,矛盾:从而证明J`必是B到C的最优路径。最优化原理是动态规划的基础,任何问题,如果失去了最优化原理的支持,就不可能用动态规划方法计算哪些问题满足最优化原理

2、重叠子问题

在用递归算法自顶向下解问题时,每次产生的子问题并不是总是新问题。有些子问题被反复计算多次。斐波那契数列问题就存在重叠子问题。在递归实现中,当计算F(n)时,会先计算F(n-1)和F(n-2),而计算F(n-1)时又会先计算F(n-2)和F(n-3),这样就会出现重复计算的情况。

四、动态规划求解问题的基本步骤

动态规划所处理的问题是一个多阶段决策的问题,一般由初始状态开始,通过中间阶段决策的选择,达到结束状态。动态规划算法的代码设计都有一定的模式。一般经过以下几个步骤:

初始状态->决策1->决策2->…->决策n->结束状态

  1. 找出最优解的性质,并刻画其结构特征(找问题状态)
  2. 递归地定义最优值(找状态转移方程)
  3. 自底向上地方式计算最优值
  4. 根据计算最优值时得到的信息,构造最优解

五、斐波那契数分析

斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0, F(1) = 1

F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

给定 N,计算 F(N)。

序列为:0、1

下标为:2

解释:F(2) = F(N - 1) + F(N - 2)= F(2 - 1) + F(2 - 2)=1+0 = 1

下标2的值为:1

序列为:0、1、1

数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和(示意图如下)

六、实现思路

  1. 定义一个要求的斐波那契数
  2. 判断求的斐波那契数是否小于等于1,是的话直接返回求的斐波那契数,否的话,则创建一个数组,用来记录子问题的解
  3. 初始化第一个斐波那契数值,和第二个斐波那契数值。求第三个斐波那契数值的时候,把前两个下标的值进行相加,得出第三个斐波那契的数值。依次按照这种方式,最终得出需要求的斐波那契数值

七、代码实现

public class Fibonacci {
    public static void main(String[] args) {
        int numberArr = 10; // 求第10个斐波那契数
        int result = fibonacci(numberArr); // 第10个斐波那契数的值
        System.out.println("第10个斐波那契数值为:"+ result); // 输出第10个斐波那契数的值
    }
    /**
    * 斐波那契数列的动态规划算法
    * @paramn  第numberArr个斐波那契数,dp为数据处理后的值
    * @return 第numberArr个斐波那契数的值
    */
    public static int fibonacci(int numberArr) {
        if (numberArr <= 1) {
            // 当numberArr小于等于1时,直接返回numberArr
            return numberArr;
        }
        //创建数组,用于记录子问题的解
        //dp为数据处理后的值
        int[] dp = new int[numberArr + 1];
        dp[0] = 0; // 初始化第一个数
        dp[1] = 1; // 初始化第二个数
        // 递推求解子问题
        for (int i = 2; i <= numberArr; i++) {
            //dp[i]:i为该求下标的值
            //dp[i-1]:i为该求下标-1的值
            //dp{[i-2]:i为该求下标-2的值
            //算出两个下标的值后进行相加,最后得出该求下标的值
            dp[i] = dp[i - 1] + dp[i - 2];
            System.out.println("第"+i+"轮numberArr的值为"+ dp[i]);
        }
        // 返回第numberArr个斐波那契数的值
        return dp[numberArr];
    }
}


相关文章
|
3月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
83 1
|
3月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
5月前
|
算法
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
|
2月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
142 7
|
2月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
121 8
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
63 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
114 2
动态规划算法学习三:0-1背包问题
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
82 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
194 0
动态规划算法学习二:最长公共子序列
|
3月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
89 9

热门文章

最新文章