C/C++语言经典、实用、趣味程序设计编程百例精解(2)
11.打鱼还是晒网
中国有句俗语叫“三天打鱼两天晒网”。某人从1990年1月1日起开始“三天打鱼两天晒网”,问这个人在以后的某一天中是“打鱼”还是“晒网”。
*问题分析与算法设计
根据题意可以将解题过程分为三步:
1)计算从1990年1月1日开始至指定日期共有多少天;
2)由于“打鱼”和“晒网”的周期为5天,所以将计算出的天数用5去除;
3)根据余数判断他是在“打鱼”还是在“晒网”;
若 余数为1,2,3,则他是在“打鱼”
否则 是在“晒网”
在这三步中,关键是第一步。求从1990年1月1日至指定日期有多少天,要判断经历年份中是否有闰年,二月为29天,平年为28天。闰年的方法可以用伪语句描述如下:
如果 ((年能被4除尽 且 不能被100除尽)或 能被400除尽)
则 该年是闰年;
否则 不是闰年。
C语言中判断能否整除可以使用求余运算(即求模)
*程序说明与注释
1. try: 2. Date = int(input('请输入日期(请以yyyymmdd输入):')) 3. date = list(str(Date)) 4. try: 5. if len(date) != 8: 6. print("输入日期有误!") 7. global year 8. year = date[0] + date[1] + date[2] + date[3] 9. year = int(year) 10. month = date[4] + date[5] 11. month = int(month) 12. day = date[6] + date[7] 13. day = int(day) 14. if year < 1990: 15. print("请输入正确的日期!") 16. # 判断是不是闰年 17. def runYear(year): 18. if year % 4 == 0 and year % 100 != 0 or year % 400 == 0: 19. return True 20. else: 21. return False 22. # 判断每月有几天 23. def getDays(year, month): 24. days = 0 25. if month == 1 or month == 3 or month == 5 or month == 7 or month == 8 or month == 10 or month == 12: 26. days = 31 27. elif month == 4 or month == 6 or month == 9 or month == 11: 28. days = 30 29. elif month == 2: 30. if runYear(year): 31. days = 29 32. else: 33. days = 28 34. return days 35. # 计算该日期本年总天数 36. def thisYearDays(year, month, day): 37. sum = 0 38. i = 1 39. while i < month: 40. monthDay = getDays(year, i) 41. sum += monthDay 42. i += 1 43. return sum + day 44. # 计算距离输入日期的总天数 45. def allDays(year, month, day): 46. sum = 0 47. i = 1990 48. while i < year: 49. if runYear(i): 50. sum += 366 51. else: 52. sum += 365 53. i += 1 54. s = thisYearDays(year, month, day) 55. sum += s 56. return sum 57. # 判断是捕鱼还是晒网 58. def judge(days): 59. x =days % 5 60. if x >= 1 and x <= 3: # 当余数为1/2/3时为打鱼,余数为0/4时候为晒网 61. print("今天打鱼") 62. else: 63. print("今天晒网") 64. sum = allDays(year, month, day) 65. judge(sum) 66. except IndexError: 67. print("请输入八位整数") 68. except ValueError: 69. print("请输入整数!")
1. #include<stdio.h> 2. int M[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 3. bool lyear(int n) 4. { 5. if((n%4==0&&n%100!=0)||(n%400==0)) return true; 6. else return false; 7. } 8. int main() 9. { 10. int year,month,day,i; 11. scanf("%d %d %d",&year,&month,&day); 12. for(i=1;i<month;i++) day+=M[i]; 13. if(year>1990){ 14. i=1990; 15. while(i<year){ 16. if(lyear(i)) day+=366; 17. else day+=365; 18. i++; 19. } 20. } 21. if(month>2) 22. if(lyear(year)) day+=1; 23. day%=5; 24. if(day>0&&day<4) printf("打鱼\n"); 25. else printf("晒网\n"); 26. return 0; 27. }
1. #include<stdio.h> 2. int days(struct date day); 3. struct date{ 4. int year;int month;int day; 5. }; 6. int main() 7. { 8. struct date today,term; 9. int yearday,year,day; 10. printf("Enter year/month/day:"); 11. scanf("%d%d%d",&today.year,&today.month,&today.day); /*输入日期*/ 12. term.month=12; /*设置变量的初始值:月*/ 13. term.day=31; /*设置变量的初始值:日*/ 14. for(yearday=0,year=1990;year<today.year;year++) 15. { 16. term.year=year; 17. yearday+=days(term); /*计算从1990年至指定年的前一年共有多少天*/ 18. } 19. yearday+=days(today); /*加上指定年中到指定日期的天数*/ 20. day=yearday%5; /*求余数*/ 21. if(day>0&&day<4) printf("he was fishing at that day.\n"); /*打印结果*/ 22. else printf("He was sleeping at that day.\n"); 23. return 0; 24. } 25. int days(struct date day) 26. { 27. static int day_tab[2][13]={{0,31,28,31,30,31,30,31,31,30,31,30,31,}, /*平均每月的天数*/ 28. {0,31,29,31,30,31,30,31,31,30,31,30,31,},}; 29. int i,lp; 30. lp=((day.year%4==0&&day.year%100!=0)||day.year%400==0);/*判定year为闰年还是平年,lp=0为平年,非0为闰年*/ 31. for(i=1;i<day.month;i++) /*计算本年中自1月1日起的天数*/ 32. day.day+=day_tab[lp][i]; 33. return day.day; 34. }
*运行结果
Enter year/month/day:1991 10 25
He was fishing at day.
Enter year/month/day:1992 10 25
He was sleeping at day.
Enter year/month/day:1993 10 25
He was sleeping at day.
*思考题
请打印出任意年份的日历
12.抓交通肇事犯
一辆卡车违反交通规则,撞人后逃跑。现场有三人目击事件,但都没有记住车号,只记下车号的一些特征。甲说:牌照的前两位数字是相同的;乙说:牌照的后两位数字是相同的,但与前两位不同; 丙是数学家,他说:四位的车号刚好是一个整数的平方。请根据以上线索求出车号。
*问题分析与算法设计
按照题目的要求造出一个前两位数相同、后两位数相同且相互间又不同的整数,然后判断该整数是否是另一个整数的平方。
*程序说明与注释
1. #include<stdio.h> 2. #include<math.h> 3. int main() 4. { 5. int i,j,k,c; 6. for(i=1;i<=9;i++) /*i:车号前二位的取值*/ 7. for(j=0;j<=9;j++) /*j:车号后二位的取值*/ 8. if(i!=j) /*判断二位数字是否相异*/ 9. { 10. k=i*1000+i*100+j*10+j; /*计算出可能的整数*/ 11. for(c=31;c*c<k;c++); /*判断该数是否为另一整数的平方*/ 12. if(c*c==k) 13. printf("Lorry–No. is %d.\n",k); /*若是,打印结果*/ 14. } 15. return 0; 16. }
*运行结果
Lorry _No.is 7744
13.该存多少钱
假设银行一年整存零取的月息为0.63%。现在某人手中有一笔钱,他打算在今后的五年中的年底取出1000元,到第五年时刚好取完,请算出他存钱时应存入多少。
*问题分析与算法设计
分析存钱和取钱的过程,可以采用倒推的方法。若第五年年底连本带息要取1000元,则要先求出第五年年初银行存款的钱数:
第五年初存款=1000/(1+12*0.0063)
依次类推可以求出第四年、第三年……的年初银行存款的钱数:
第四年年初存款=(第五年年初存款+1000)/(1+12*0.0063)
第三年年初存款=(第四年年初存款+1000)/(1+12*0.0063)
第二年年初存款=(第三年年初存款+1000)/(1+12*0.0063)
第一年年初存款=(第二年年初存款+1000)/(1+12*0.0063)
通过以上过程就可以很容易地求出第一年年初要存入多少钱。
*程序说明与注释
1. #include<stdio.h> 2. int main() 3. { 4. int i; 5. float total=0; 6. for(i=0;i<5;i++) /*i 为年数,取值为0~4年*/ 7. total=(total+1000)/(1+0.0063*12); /*累计算出年初存款数额,第五次的计算结果即为题解*/ 8. printf("He must save %.2f at first.\n",total); 9. return 0; 10. }
*运行结果
He must save 4039.44 at first
14.怎样存钱利最大
假设银行整存整取存款不同期限的月息利率分别为:
0.63% 期限=1年
0.66% 期限=2年
0.69% 期限=3年
0.75% 期限=5年
0.84% 期限=8年
利息=本金*月息利率*12*存款年限。
现在某人手中有2000元钱,请通过计算选择一种存钱方案,使得钱存入银行20年后得到的利息最多(假定银行对超过存款期限的那一部分时间不付利息)。
*问题分析与算法设计
为了得到最多的利息,存入银行的钱应在到期时马上取出来,然后立刻将原来的本金和利息加起来再作为新的本金存入银行,这样不断地滚动直到满20年为止,由于存款的利率不同,所以不同的存款方法(年限)存20年得到的利息是不一样的。
分析题意,设2000元存20年,其中1年存i1次,2年存i2次,3年存i3次,5年存i5次,8年存i8次,则到期时存款人应得到的本利合计为:
2000*(1+rate1)i1*(1+rate2)i2*(1+rate3)i3*(1+rate5)i5*(1+rate8)i8
其中rateN为对应存款年限的利率。根据题意还可得到以下限制条件:
0<=i8<=2
0<=i5<=(20-8*i8)/5
0<=i3<=(20-8*i8-5*i5)/3
0<=i2<=(20-8*i8-5*i5-3*i3)/2
0<=i1=20-8*i8-5*i5-3*i3-2*i2
可以用穷举法穷举所有的i8、i5、i3、i2和i1的组合,代入求本利的公式计算出最大值,就是最佳存款方案。
*程序说明与注释
1. #include<stdio.h> 2. #include<math.h> 3. int main() 4. { 5. int i8,i5,i3,i2,i1,n8,n5,n3,n2,n1; 6. float max=0,term; 7. for(i8=0;i8<3;i8++) /*穷举所有可能的存款方式*/ 8. for(i5=0;i5<=(20-8*i8)/5;i5++) 9. for(i3=0;i3<=(20-8*i8-5*i5)/3;i3++) 10. for(i2=0;i2<=(20-8*i8-5*i5-3*i3)/2;i2++){ 11. i1=20-8*i8-5*i5-3*i3-2*i2; 12. term=2000.0*pow((double)(1+0.0063*12),(double)i1) 13. *pow((double)(1+2*0.0063*12),(double)i2) 14. *pow((double)(1+3*0.0069*12),(double)i3) 15. *pow((double)(1+5*0.0075*12),(double)i5) 16. *pow((double)(1+8*0.0084*12),(double)i8);/*计算到期时的本利合计*/ 17. if(term>max){ 18. max=term;n1=i1;n2=i2;n3=i3;n5=i5;n8=i8; 19. } 20. } 21. printf("For maxinum profit,he should so save his money in a bank:\n"); 22. printf(" made fixed deposit for 8 year: %d times\n",n8); 23. printf(" made fixed deposit for 5 year: %d times\n",n5); 24. printf(" made fixed deposit for 3 year: %d times\n",n3); 25. printf(" made fixed deposit for 2 year: %d times\n",n2); 26. printf(" made fixed deposit for 1 year: %d times\n",n1); 27. printf(" Toal: %.2f\n",max);/*输出存款方式*/ 28. return 0; 29. }
*运行结果
For maxinum profit,he should so save his money in a bank:
made fixed deposit for 8 year: 0times
made fixed deposit for 5 year: 4times
made fixed deposit for 3 year: 0times
made fixed deposit for 2 year: 0times
made fixed deposit for 1 year: 0times
Total:8841.01
可见最佳的存款方案为连续四次存5年期。
*思考题
某单位对职工出售住房,每套为2万元。买房付款的方法是:
一次交清,优惠20%
从第一年开始,每年年初分期付款:
5年交清,优惠50%;
10年交清,优惠10%;
20年交清,没有优惠。
现在有人手中正好有2万元,若假定在今后20年中物价和银行利率均保持不变,问他应当选择哪种付款方式可以使应付的钱最少?
15.捕鱼和分鱼
A、B、C、D、E五个人在某天夜里合伙去捕鱼,到第二天凌晨时都疲惫不堪,于是各自找地方睡觉。日上三杆,A第一个醒来,他将鱼分为五份,把多余的一条鱼扔掉,拿走自己的一份。B第二个醒来,也将鱼分为五份,把多余的一条鱼扔掉,保持走自己的一份。C、D、E依次醒来,也按同样的方法拿走鱼。问他们合伙至少捕了多少条鱼?
*问题分析与算法设计
根据题意,总计将所有的鱼进行了五次平均分配,每次分配时的策略是相同的,即扔掉一条鱼后剩下的鱼正好分成五份,然后拿走自己的一份,余下其它的四份。
假定鱼的总数为X,则X可以按照题目的要求进行五次分配:X-1后可被5整除,余下的鱼为4*(X-1)、5。若X满足上述要求,则X就是题目的解。
*程序说明与注释
1. #include<stdio.h> 2. int main() 3. { 4. int n,i,x,flag=1; /*flag:控制标记*/ 5. for(n=6;flag;n++) /*采用试探的方法。令试探值n逐步加大*/ 6. { 7. for(x=n,i=1&&flag;i<=5;i++) 8. if((x-1)%5==0) x=4*(x-1)/5; 9. else flag=0; /*若不能分配则置标记falg=0退出分配过程*/ 10. if(flag) break; /*若分配过程正常结束则找到结果退出试探的过程*/ 11. else flag=1; /*否则继续试探下一个数*/ 12. } 13. printf("Total number of fish catched=%d\n",n); /*输出结果*/ 14. return 0; 15. }
*运行结果
Total number of fish catched = 3121
*问题的进一步讨论
程序采用试探法,试探的初值为6,每次试探的步长为1。这是过分保守的做法。可以在进一步分析题目的基础上修改此值,增大试探的步长值,以减少试探次数。
*思考题
请使用其它的方法求解本题。
16.出售金鱼
买卖提将养的一缸金鱼分五次出售系统上一次卖出全部的一半加二分之一条;第二次卖出余下的三分之一加三分之一条;第三次卖出余下的四分之一加四分之一条;第四次卖出余下的五分之一加五分之一条;最后卖出余下的11条。问原来的鱼缸中共有几条金鱼?
*问题分析与算法设计
题目中所有的鱼是分五次出售的,每次卖出的策略相同;第j次卖剩下的(j+1)分之一再加1/(j+1)条。第五次将第四次余下的11条全卖了。
假定第j次鱼的总数为X,则第j次留下:
x-(x+1)/(j+1)
当第四次出售完毕时,应该剩下11条。若X满足上述要求,则X就是题目的解。
应当注意的是:"(x+1)/(j+1)"应满足整除条件。试探X的初值可以从23开始,试探的步长为2,因为X的值一定为奇数。
*程序说明与注释
1. #include<stdio.h> 2. int main() 3. { 4. int i,j,n=0,x; /*n为标志变量*/ 5. for(i=23;n==0;i+=2) /*控制试探的步长和过程*/ 6. { 7. for(j=1,x=i;j<=4&&x>=11;j++) /*完成出售四次的操作*/ 8. if((x+1)%(j+1)==0) /*若满足整除条件则进行实际的出售操作*/ 9. x-=(x+1)/(j+1); 10. else {x=0;break;} /*否则停止计算过程*/ 11. if(j==5&&x==11) /*若第四次余下11条则满足题意*/{ 12. printf("There are %d fishes at first.\n",i); /*输出结果*/ 13. n=1; /*控制退出试探过程*/ 14. } 15. } 16. return 0; 17. }
*运行结果
There are 59 fishes at first.
*思考题
日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子?
17.平分七筐鱼
甲、乙、丙三位鱼夫出海打鱼,他们随船带了21只箩筐。当晚返航时,他们发现有七筐装满了鱼,还有七筐装了半筐鱼,另外七筐则是空的,由于他们没有秤,只好通过目测认为七个满筐鱼的重量是相等的,7个半筐鱼的重量是相等的。在不将鱼倒出来的前提下,怎样将鱼和筐平分为三份?
*问题分析与算法设计
根据题意可以知道:每个人应分得七个箩筐,其中有3.5筐鱼。采用一个3*3的数组a来表示三个人分到的东西。其中每个人对应数组a的一行,数组的第0列放分到的鱼的整筐数,数组的第1列放分到的半筐数,数组的第2列放分到的空筐数。由题目可以推出:
。数组的每行或每列的元素之和都为7;
。对数组的行来说,满筐数加半筐数=3.5;
。每个人所得的满筐数不能超过3筐;
。每个人都必须至少有1 个半筐,且半筐数一定为奇数
对于找到的某种分鱼方案,三个人谁拿哪一份都是相同的,为了避免出现重复的分配方案,可以规定:第二个人的满筐数等于第一个人的满筐数;第二个人的半筐数大于等于第一个人的半筐数。
*程序说明与注释
1. #include<stdio.h> 2. int a[3][3],count; 3. int main() 4. { 5. int i,j,k,m,n,flag; 6. printf("It exists possible distribtion plans:\n"); 7. for(i=0;i<=3;i++) /*试探第一个人满筐a[0][0]的值,满筐数不能>3*/{ 8. a[0][0]=i; 9. for(j=i;j<=7-i&&j<=3;j++) /*试探第二个人满筐a[1][0]的值,满筐数不能>3*/{ 10. a[1][0]=j; 11. if((a[2][0]=7-j-a[0][0])>3)continue; /*第三个人满筐数不能>3*/ 12. if(a[2][0]<a[1][0])break; /*要求后一个人分的满筐数>=前一个人,以排除重复情况*/ 13. for(k=1;k<=5;k+=2) /*试探半筐a[0][1]的值,半筐数为奇数*/{ 14. a[0][1]=k; 15. for(m=1;m<7-k;m+=2) /*试探 半筐a[1][1]的值,半筐数为奇数*/{ 16. a[1][1]=m;a[2][1]=7-k-m; 17. for(flag=1,n=0;flag&&n<3;n++)/*判断每个人分到的鱼是 3.5筐,flag为满足题意的标记变量*/ 18. if(a[n][0]+a[n][1]<7&&a[n][0]*2+a[n][1]==7) 19. a[n][2]=7-a[n][0]-a[n][1]; /*计算应得到的空筐数量*/ 20. else flag=0; /*不符合题意则置标记为0*/ 21. if(flag){ 22. printf("No.%d Full basket Semi–basket Empty\n",++count); 23. for(n=0;n<3;n++) 24. printf(" fisher %c: %d %d %d\n",'A'+n,a[n][0],a[n][1],a[n][2]); 25. } 26. } 27. } 28. } 29. } 30. return 0; 31. }
* 运行结果
It exists possible distribution plans:
No.1 Full basket Semi–basket Empty
fisher A: 1 5 1
fisher B: 3 1 3
fisher C: 3 1 3
No.2 Full basket Semi–basket Empty
fisher A: 2 3 2
fisher B: 2 3 2
fisher C: 3 1 3
*思考题
晏会上数学家出了一道难题:假定桌子上有三瓶啤酒,癣瓶子中的酒分给几个人喝,但喝各瓶酒的人数是不一样的。不过其中有一个人喝了每一瓶中的酒,且加起来刚好是一瓶,请问喝这三瓶酒的各有多少人?
(答案:喝三瓶酒的人数分别是2人、3人和6人)
18.有限5位数
个位数为6且能被3整除的五位数共有多少?
*题目分析与算法设计
根据题意可知,满足条件的五位数的选择范围是10006、10016。。。99996。可设基础数i=1000,通过计算i*10+6即可得到欲选的数(i的变化范围是1000~999),再判断该数能否被3整除。
*程序说明与注释
1. #include<stdio.h> 2. int main() 3. { 4. long int i; 5. int count=0; /*count:统计满足条件的五位数的个数*/ 6. for(i=1000;i<9999;i++) 7. if(!((i*10+6)%3)) /*判断所选的数能否被3整除*/ 8. count++; /*若满足条件则计数*/ 9. printf("count=%d\n",count); 10. return 0; 11. }
*运行结果
count=2999
*思考题
求100到1000之间有多少个其数字之和为5的整数。
(答案:104,113,122,131,140,203,212,221,230,302,311,320,401,410,500)
19.8除不尽的自然数
一个自然数被8除余1,所得的商被8除也余1,再将第二次的商被8除后余7,最后得到一个商为a。又知这个自然数被17除余4,所得的商被17除余15,最后得到一个商是a的2倍。求这个自然数。
*问题分析与算法设计
根据题意,可设最后的商为i(i从0开始取值),用逆推法可以列出关系式:
(((i*8+7)*8)+1)*8+1=((2*i*17)+15)*18+4
再用试探法求出商i的值。
*程序说明与注释
1. #include<stdio.h> 2. int main() 3. { 4. int i; 5. for(i=0;;i++) /*试探商的值*/ 6. if(((i*8+7)*8+1)*8+1==(34*i+15)*17+4){ 7. /*逆推判断所取得的当前i值是否满足关系式*//*若满足则输出结果*/ 8. printf("The required number is: %d\n",(34*i+15)*17+4); 9. break; /*退出循环*/ 10. } 11. return 0; 12. }
*运行结果
The required number is:1993
20.一个奇异的三位数
一个自然数的七进制表达式是一个三位数,而这个自然数的九进制表示也是一个三位数,且这两个三位数的数码正好相反,求这个三位数。
*问题分析与算法设计
根据题意可知,七进制和九进制表示的这全自然数的每一位一定小于7,可设其七进制数形式为kji(i、j、k的取值分别为1~6),然后设其九进制表示形式为ijk。
*程序说明与注释
1. #include<stdio.h> 2. int main() 3. { 4. int i,j,k; 5. for(i=1;i<7;i++) 6. for(j=0;j<7;j++) 7. for(k=1;k<7;k++) 8. if(i*9*9+j*9+k==i+j*7+k*7*7){ 9. printf("The special number with 3 digits is:"); 10. printf("%d%d%d(7)=%d%d%d(9)=%d(10)\n",k,j,i,i,j,k,i*9*9+j*9+k); 11. } 12. return 0; 13. }
*运行结果
The special number with 3 digits is:503(7)=305(9)=248(10)