堆排序详解(Heap Sort)

简介: 堆排序详解

一、简单释义

1、算法概念

 堆排序(Heap Sort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

2、算法目的

 把无序数组通过转换成堆的形式,通过堆的各个结点比较进行交换位置,最后形成一个有序数组  (文中以大根堆为例)

3、算法思想

 将待排序的序列构造成一个大根堆 或小根堆(文中以大根堆为例),然后将堆顶元素与最后一个元素交换位置 ,再将剩余元素重新构造成一个堆,重复执行以上操作,直到整个序列有序。

4、算法性质

以大根堆为例,它总是满足下列性质:

 1. 空堆是一个大根堆

 2. 大根堆中某个结点的关键字小于等于其父结点的关键字;

 3. 大根堆是一个完全二叉树

二、核心思想

构建

 构造堆的过程就是将无序的序列构造成一个堆的过程。

排序

 将堆顶元素与最后一个元素交换位置,然后将剩余元素重新构造成一个堆的过程。

三、图形展示

宏观展示

85382e862fa94c9c88b94f998f2880fe.png

微观展示

 以4、6、3、5、9这个数组为例,根据数组构建二叉堆。

0728ad97a0bb45c380bf0fa1a8ac9233.png

 1、第一次排序:从叶子结点往上进行比较,首先是5和6比较,5小于6不交换位置。然后9和6进行比较,9大于6交换位置。

eeda03794f16448890c7b6a8007074ff.png

 2、第二次排序:9和4进行对比,9大于4交换位置。然后6和4进行比较,6大于4交换位置。最终的到一个最大值9。9和4交换位置继续排序。

4ad74df8eb4142e7b41cc87ec22aa4f2.png

 3、第三次排序:重复上述操作。

1a19feae118744c8aad278123a0305b2.png

 4、第四次排序

27db372cde2c441dbc50dd809c1f6442.png

 5、第五次排序

ca3975faa6244094b9547247a0f5e98f.png

四、算法实现

实现思路

 将图形化展示的过程转换成对应的开发语言,本文中主要以Java语言为例来进行算法的实现。

 1、首先将待排序的数组构造成一个大根堆,此时,整个数组的最大值就是堆结构的顶端

 2、将顶端的数与末尾的数交换,此时,末尾的数为最大值,剩余待排序数组个数为n-1

 3、将剩余的n-1个数再构造成大根堆,再将顶端数与n-1位置的数交换,反复执行,便能得到有序数组

 能把整个过程描述清楚实现起来才会更加容易!!!

代码实现

客户端调用

/**
 * @BelongsProject: demo
 * @BelongsPackage: com.wzl.Algorithm.HeapSort
 * @Author: Wuzilong
 * @Description: 堆排序
 * @CreateTime: 2023-05-22 11:45
 * @Version: 1.0
 */
public class HeapSort {
    public static void main(String[] args) {
        int[] numArray={4,6,3,5,9};
        heapSort(numArray);
    }
}

构造堆的方法

//构造堆的方法
    public static void heapSort(int[] arr) {
        int n = arr.length;
        // 构造大根堆
        for (int i = n / 2 - 1; i >= 0; i--) {
            heapify(arr, n, i);
        }
        // 交换堆顶元素和最后一个元素,并重新构造堆
        for (int i = n - 1; i >= 0; i--) {
            swap(arr, 0, i);
            heapify(arr, i, 0);
            System.out.println( Arrays.toString(arr));
        }

元素交换的方法

private static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

元素比较的方法

private static void heapify(int[] arr, int n, int i) {
        int largest = i;
        int left = 2 * i + 1;
        int right = 2 * i + 2;
        if (left < n && arr[left] > arr[largest]) {
            largest = left;
        }
        if (right < n && arr[right] > arr[largest]) {
            largest = right;
        }
        if (largest != i) {
            swap(arr, i, largest);
            heapify(arr, n, largest);
        }
    }

运行结果

58e832c2a88348a69c31b7ab149ca476.png

五、算法描述

1、问题描述

 通过给定的数据集合,创建堆。可以先创建堆数组的内存空间。然后一个一个执行堆的插入操作。

2、算法过程

整个算法过程分为以下几步:

 1)将待排序序列构造成一个大根堆或小根堆。

 2)将堆顶元素与最后一个元素交换位置,堆的大小减一。

 3)对剩余元素重新构造成一个堆。

 4)重复执行步骤 2 和步骤 3,直到整个序列有序。

3、算法总结

 构造的过程就是将无序的序列构造成一个堆的过程。堆的定义是:对于任意一个非叶子节点 i,其左子节点为 2i+1,右子节点为 2i+2,且父节点的值大于等于(或小于等于)其子节点的值。因此,我们可以从最后一个非叶子节点开始,依次将其与其子节点比较,如果不满足堆的定义,则交换位置,直到整个序列构造成一个堆为止。

 排序的过程就是将堆顶元素与最后一个元素交换位置,然后将剩余元素重新构造成一个堆的过程。每次交换后,堆的大小减一,因此我们可以通过一个变量来记录堆的大小,从而将排序的过程限制在堆的范围内。

六、算法分析

1、时间复杂度

 堆排序是一种基于二叉堆的排序算法,其时间复杂度:最好、最坏和平均均为 O(nlogn)

2、空间复杂度

 堆排序是一种原地排序算法,所以空间复杂度为 O(1)。

3、算法稳定性

 堆排序是一种不稳定的排序算法。在堆排序过程中,由于交换堆顶元素和最后一个元素的位置可能会改变相同元素之间的相对顺序,所以堆排序不是稳定的排序算法。

🎯 此文章对你有用的话记得留言+点赞+收藏哦🎯

相关文章
|
8月前
|
人工智能 搜索推荐 算法
sort-04-heap sort 堆排序算法详解
这是一个关于排序算法的系列文章摘要,包括了10篇关于不同排序算法的链接,如冒泡排序、快速排序、选择排序、堆排序等。堆排序是一种基于比较的排序算法,利用了近似完全二叉树的结构并满足最大堆或最小堆的性质。最大堆中,每个节点的值都大于或等于其子节点。文章详细解释了最大堆的概念、节点访问方式以及堆的操作,包括堆调整和堆排序的过程,并通过图解展示了堆排序的具体步骤。此外,还提供了一个Java实现的堆排序代码示例。整个排序系列来源于一个开源项目,读者可以通过链接查看完整内容。
sort-04-heap sort 堆排序算法详解
|
8月前
|
搜索推荐 算法 Java
sort-03-SelectSort 选择排序算法详解
这是一个关于排序算法的系列文章摘要,包括了各种排序算法的介绍和Java实现。文章列举了冒泡排序、快速排序、选择排序、堆排序、插入排序、希尔排序、归并排序、计数排序、桶排序以及大文件外部排序的链接和简要说明。其中,选择排序算法被详细解释,它是通过找到未排序序列中的最小元素并将其放到正确位置来逐步构建有序序列的。Java实现中,选择排序的`doSort`方法通过两层循环实现,时间复杂度为`O(N^2)`,是稳定的排序算法。整个排序项目已开源在GitHub。
|
8月前
|
搜索推荐 算法 Java
sort-08-counting sort 计数排序
这是一个关于排序算法的系列文章摘要。文章详细介绍了多种排序算法,包括冒泡排序、快速排序、选择排序、堆排序、插入排序、希尔排序、归并排序、计数排序、桶排序以及大文件外部排序。计数排序是一种线性时间复杂度的稳定排序算法,由 Harold H. Seward 在1954年提出。基础版计数排序通过创建一个与最大元素等长的新数组来统计每个元素出现的次数,然后填充排序结果。改良版则考虑了空间浪费问题,通过找出最小值来减少数组长度。此外,还提出了使用 TreeMap 来扩展排序算法以适应非数字元素的情况。
|
8月前
|
搜索推荐 算法 Java
sort-07-merge sort 归并排序
这是一个关于排序算法的系列文章摘要。文章涵盖了多种排序算法的详细解释,包括冒泡排序、快速排序、选择排序、堆排序、插入排序、希尔排序、归并排序、计数排序、桶排序以及大文件外部排序。归并排序是一种效率为O(nlogn)的排序算法,基于分治法,将序列分成两半,分别排序后再合并。文章提供了Java实现的递归和迭代版本。在归并排序的递归实现中,代码通过不断拆分和合并子序列完成排序,而迭代实现则是通过逐步增大子序列长度并进行两两归并来排序。整个系列可在GitHub找到相关源码。
|
8月前
|
搜索推荐 算法 Java
sort-02-QuickSort 快速排序到底快在哪里?
这是一个关于排序算法的系列文章的摘要。文章详细介绍了各种排序算法,包括冒泡排序、快速排序、选择排序、堆排序、插入排序、希尔排序、归并排序、计数排序、桶排序以及处理大文件的外部排序。特别强调了快速排序,它是1959年由Tony Hoare发明的,平均时间复杂度为O(n log n),优于其他如合并排序和堆排序。快速排序采用分而治之的策略,选取基准元素,通过分区操作将数组分成两部分,然后递归地对这两部分进行排序。文章还通过示例和Java代码解释了快速排序的步骤和实现。最后,提供了开源项目的链接,供读者进一步学习和研究。
|
8月前
|
搜索推荐 Python
堆排序(Heap Sort)
堆排序(Heap Sort)是一种选择排序算法,通过将待排序的元素构建成一个最大堆(或最小堆),然后将堆顶元素与堆尾元素交换,将堆的大小减一,再调整堆,使其重新满足最大堆(或最小堆)的性质。重复以上步骤,直到堆中只剩下一个元素,即排序完成。
41 2
|
存储 搜索推荐 算法
计数排序(Counting Sort)详解
计数排序(Counting Sort)是一种非比较排序算法,其核心思想是通过计数每个元素的出现次数来进行排序,适用于整数或有限范围内的非负整数排序。这个算法的特点是速度快且稳定,适用于某些特定场景。在本文中,我们将深入探讨计数排序的原理、步骤以及性能分析。
292 1
计数排序(Counting Sort)详解
2-路插入排序(Two-Way Insertion Sort)
算法介绍 算法描述 算法分析 代码实现 参考
|
搜索推荐 算法 数据可视化
【基础篇】9 # 排序:冒泡排序(Bubble Sort)、插入排序(Insertion Sort)、选择排序(Selection Sort)
【基础篇】9 # 排序:冒泡排序(Bubble Sort)、插入排序(Insertion Sort)、选择排序(Selection Sort)
124 0
|
搜索推荐
十大排序之Heap Sort 堆排序
十大排序之Heap Sort 堆排序

热门文章

最新文章