ReentrantLock.NonfairSync#tryAcquire
NonfairSync#tryAcquire 方法重写至 AQS 类,AQS 该方法并没有实现,而是抛出异常,具体的实现内容交由给子类去进行实现,这里采用了设计模式 > 模版方法
具体的子类实现:ReentrantLock.NonfairSync#tryAcquire,该方法作用:尝试获取一把锁,若成功返回 true、失败返回 false
protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } // Sync#nonfairTryAcquire final boolean nonfairTryAcquire(int acquires) { // 获取当前线程 final Thread current = Thread.currentThread(); int c = getState();// 获取 state 状态 if (c == 0) { // 代表无锁状态 // CAS 替换 state 值,CAS 成功表示锁获取成功 if (compareAndSetState(0, acquires)) { // 保存当前获取锁的线程 setExclusiveOwnerThread(current); return true; } } // 若同一个线程多次获取同一把锁,直接增加锁重入次数即可 else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }
- 获取当前内存中 state 锁状态值
- state 状态为 0 代表当前锁处于无锁状态,首次获取锁的线程可以通过 CAS 操作更新 state 锁状态值
- 若当前线程等于锁占有的线程,则增加锁重入次数即可
- 其他情况,代表获取锁失败的线程,执行 AQS#acquire 方法中的 addWaiter(Node.EXCLUSIVE), arg) 方法 > 添加独占模式的 Node 队列节点
AQS#addWaiter
当 tryAcquire 方法获取锁失败以后,则会先调用 addWaiter 将当前线程封装成 Node,源码如下:
private Node addWaiter(Node mode) { // 将当前线程封装为 Node 节点 Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure // tail 指向 AQS 同步队列中的尾部节点,默认:null Node pred = tail; // tail 不为空的情况下,说明同步队列中存在节点 if (pred != null) { // 将当前线程 Node prev 前驱节点指针指向原来的尾部节点 node.prev = pred; // 通过 CAS 操作将当前 Node 设置为尾部节点 if (compareAndSetTail(pred, node)) { // 设置成功以后,将原来的尾部节点 next 后继节点指向当前 Node pred.next = node; return node; } } // tail 为空的情况下,调用 enq 方法将当前 Node 添加到同步队列中 enq(node); return node; }
入参:mode 表示节点的状态,ReentrantLock 传入的状态参数:Node.EXCLUSIVE 代表独占模式,意味着重入锁获取锁采用独占的方式,addWaiter 方法基本的执行过程,如下所示:
- 将当前线程封装为 Node 节点对象
- 判断当前同步队列中的尾部节点是否为空
- 若尾部节点不为空,通过 CAS 操作将当前线程的 Node 添加到同步队列中,并将新加入的 Node 设置为尾节点,采用尾插法的方式进行队列入队的
- 若尾部节点为空或者 CAS 设置尾部节点失败,调用 enq 方法将当前 Node 添加到同步队列中
AQS#enq
该方法通过自旋的方式以便可以成功将当前节点加入到同步队列中
/** * +------+ prev +-----+ +-----+ * head | | <---- | | <---- | | tail * +------+ +-----+ +-----+ */ private Node enq(final Node node) { for (;;) { Node t = tail; // 尾节点为空,说明当前同步队列中未存在元素 // 初始化一个空对象 Node,先通过 CAS 将其设置为头节点,若成功再将其设置为尾节点 if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { // 当前节点的前驱节点指向原来尾部节点、将当前节点设置为尾部节点、原来尾部节点后继节点指向当前节点 node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
enq 方法执行只是为了维护同步等待队列的节点元素,当多个线程开始竞争锁时,必然会进行排队,第一次入队的线程不仅要承担将自身加入到队列中,同时还需要初始化一个空 Node 对象,将其设置为头尾节点
图解分析
假设有 3 个线程同时来争抢锁,那么截止到 AQS#addWaiter 或 AQS#enq 方法结束之后,AQS 中同步等待队列结构图,如下所示:
AQS#acquireQueued
当执行完 AQS#addWaiter 方法以后,会将返回的 Node 参数传递给 acquireQueued 方法,去实现锁竞争、阻塞线程逻辑,方法源码如下:
final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { // 获取当前 Node 节点的前驱 prev 节点 final Node p = node.predecessor(); // 若前驱 prev 节点为头节点,当前 Node 重新尝试获取锁 if (p == head && tryAcquire(arg)) { // 获取锁成功,说明锁已经被持有的线程所释放,设置当前 Node 为头节点 setHead(node); // 将原 head 头节点从同步队列中移除 p.next = null; // help GC failed = false; return interrupted; } // 获取锁失败,会获取前驱节点并更新 waitStatus 状态值 // 随机调用原生锁 LockSupport#park 方法阻塞当前竞争锁的线程 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
acquireQueued 方法基本的执行过程同时以 AQS#enq 分析中的图解分析为例,如下所示:
- 获取当前节点 Node prev 前驱节点
比如:当前是线程 B,那么它的前驱节点就是 Thread 为 null 的头节点
- 若 prev 前驱节点为 head 头节点,那么它有资格再去争抢一次锁,调用 ReentrantLock.NonfairSync#tryAcquire 方法抢占锁
也就是说线程 B 在这里也会有一次机会再去争夺锁
- 若抢占锁成功,把当前抢到锁的 Node 节点设置为 head 头节点,并且移除原有的头节点
- 若抢占锁失败,先通过 shouldParkAfterFailedAcquire 方法更新一次 waitStatus 值状态,然后再调用原生锁支持 > LockSupport.park(this) 阻塞当前线程等待后续被唤醒
仍然以线程 A 未释放锁,线程 B 处于首节点的情况作以说明:由于 acquireQueued 方法是死循环,所有的 Node 新建时 waitStatus 属性值都为 0 (除了 Condition 条件变量)第一次遍历时会抢一次锁;这一次会调用 shouldParkAfterFailedAcquire 方法将 waitStatus -> 0 更改为 SIGNAL-待唤醒状态,该方法执行完以后会返回 false,然后会继续第二次循环,第二次执行 shouldParkAfterFailedAcquire 方法返回 true,接着会调用 parkAndCheckInterrupt 方法使用原生锁方式:LockSupport.park(this) > 阻塞当前线程并返回当前线程是否中断的标识
- 最后,通过 cancelAcquire 方法取消当前线程获取锁的节点
AQS#shouldParkAfterFailedAcquire
线程 A 未释放锁,线程 B、线程 C 来争抢锁肯定会失败,失败以后会调用 shouldParkAfterFailedAcquire 方法,Node#waitStatus 存在五种状态,如下:
- CANCELLED:值为 1,即为结束状态,在同步等待队列中等待的线程超时或被中断,需要从同步队列中取消该线程 Node 节点,进入该状态以后的节点将不再发生变化
- 0:初始化状态
- SIGNAL:值为 -1,当前驱节点释放锁以后,就会通知标识为 SIGNAL 状态的后继 Node 节点线程
- CONDITION:值为 -2,与 ReentrantLock#newCondition 条件变量有关系,AQS.ConditionObject#addConditionWaiter 在该方法中会提现出来
- PROPAGATE:值为 -3,在共享模式下,PROPAGATE 处于可运行状态
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; // 若前驱节点为 SIGNAL,意味着只需要等待其他前驱节点的线程被释放 // 当获取锁的线程调用 release 方法后,该前驱节点的线程就会被唤醒 if (ws == Node.SIGNAL) // 返回 true,意味着当前线程可以放心调用 parkAndCheckInterrupt 方法进行挂起 return true; // waitState 大于 0,意味着 prev 前驱节点取消了排队操作,直接将这个节点移除即可 if (ws > 0) { // 相当于:pred=pred.prev;node.prev=pred; // 从尾部节点开始查找,直到将所有的 CANCELLED 节点移除 do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { // 使用 CAS 设置前驱 prev 节点状态为 SIGNAL compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }
该方法主要作用:通过 Node 节点状态来判断,线程 B、线程 C 竞争锁失败后是否应该要被挂起
- 若 Thread-B、Thread-C 前驱 prev 节点状态为 SIGNAL,表示可以放心挂起所在的当前线程
- 若当前线程 prev 节点状态为 CANCELLED,采用循环方式扫描同步等待队列将 CANCELLED 状态的节点从同步等待队列中移除
- 以上两个条件都满足,将前驱 prev 节点状态改为 SIGNAL,返回 false
该方法返回 true、false 代表的含义不同,当返回 true 时,不会进入 AQS#acquireQueued 方法的下一次循环,会调用 parkAndCheckInterrupt 方法将当前线程阻塞;当返回 false 时,会进入到 AQS#acquireQueued 方法的下一次循环再次尝试争抢一次锁,当抢锁成功当前线程就是独占线程,抢锁失败再调用 parkAndCheckInterrupt 方法将当前线程阻塞
AQS#parkAndCheckInterrupt
parkAndCheckInterrupt 方法逻辑比较简单,先看源码,如下:
private final boolean parkAndCheckInterrupt() { LockSupport.park(this); return Thread.interrupted(); }
- 调用 LockSupport#park 方法挂起当前线程编程 waiting 状态
LockSupport 原生锁支持
park 方法:阻塞当前线程,不需要使用 sync 修饰,直接可以使用
unpark 方法:唤醒指定线程
unpark 方法可以先于 park 方法先调用,unpark 相当于是获取许可数量 1、park 相当于是消费许可数量 1
- Thread#interrupted:返回当前线程是否被其他线程触发过中断请求,也就是调用 Thread#interrupt 方法;若有触发过中断请求,那么该方法会返回当前的中断标识为 true,并且会对中断标识进行复位标识已经响应过了中断请求,也就是会在 AQS#acquire 方法中执行 selfInterrupt 方法
- selfInterrupt:标识当前线程是否执行 AQS#acquireQueued 方法时被中断过,若被中断过,则需要响应中断请求,因为在线程调用 AQS#acquireQueued 方法是不会去响应中断请求的
通过 AQS#acquireQueued 方法来竞争锁,若 Thread-A 仍然还在执行中未释放锁,那么 Thread-B、Thread-C 还会继续挂起
到这里,锁相关的竞争方法在这里基本上都介绍过了,其实看到这里,能发现,当竞争的锁线程失败时,会调用 LockSupport#park 方法阻塞住,等待锁匙放时,还会有 LockSuppor#unpark 方法进行锁匙放,下面就来分析锁匙放时的一些核心方法是如何处理的!!!
锁释放核心方法
若此时 Thread-A 释放锁了,那么接下来 Thread-B、Thread-C 是如何走的呢?
ReentrantLock#unlock
public void unlock() { sync.release(1); }
在 unlock 方法中,会调用其内部类 Sync#release 方法,但由于 Sync 并未其父类 AQS#release 方法,所以它会延用其父类 AQS#release 方法的处理逻辑,源码如下:
public final boolean release(int arg) { // 若释放占用当前锁的节点 Node 线程成功 if (tryRelease(arg)) { // 获取 AQS 同步等待队列中的 head 头节点 Node h = head; // 若 head 节点不为空 & waitStatus 非默认值,直接唤醒下一个节点去争抢锁 if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; }
该方法主要的执行流程分为几步,如下:
- 先调用 ReentrantLock.Sync#tryRelease 方法探测锁释放是否可以成功,它来自 AQS 子类 ReentrantLock.Sync 所实现的
- 获取同步等待队列中的 head 首节点,若其不为空,并且它的 waitStatus 属性值非默认值 0,那么就会调用 unparkSuccessor 方法唤醒队列中的下一个节点