【MATLAB第59期】基于MATLAB的混沌退火粒子群CSAPSO-BP、SAPSO-BP、PSO-BP优化BP神经网络非线性函数拟合预测/回归预测对比

简介: 不同版本matlab 不同电脑 加上数据集随机,BP权值阈值随机,进化算法种群随机,所以运行结果不一定和我运行的一致。其次, 也会存在CSAPSO 比SAPSO / PSO差的情况。私信回复“59期”即可获取下载链接。获取细则详见主页置顶文章。

【MATLAB第59期】基于MATLAB的混沌退火粒子群CSAPSO-BP、SAPSO-BP、PSO-BP优化BP神经网络非线性函数拟合预测/回归预测对比

注意事项

不同版本matlab 不同电脑 加上数据集随机,BP权值阈值随机,进化算法种群随机,所以运行结果不一定和我运行的一致 。其次, 也会存在CSAPSO 比SAPSO / PSO差的情况。

一、效果展示

2023-07-23_221548.png
2023-07-23_221725.png
2023-07-23_221733.png

二、代码展示

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
%temp =1:size(res,1);
temp =randperm(size(res,1));
save temp temp
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
MM = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
NN = size(P_test, 2);


%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%节点个数
inputnum=size(p_train,1);       % 输入层神经元个数 
outputnum=size(t_train,1);     % 输出层神经元个数
hiddennum=10;
% 创建网络;
net1 = newff(p_train,t_train,hiddennum);
net2 = newff(p_train,t_train,hiddennum);
net3 = newff(p_train,t_train,hiddennum);
%节点总数 2*5 + 5 + 5 + 1 = 21 
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;

%% 粒子群算法求权值和阈值
%粒子群算法参数设置
N = 20;
c1 = 2;
c2 = 2;
w = 0.6;
M = 100;
D = numsum;
x = zeros(1,D);

%% 把最优初始阀值权值赋予网络预测
% 用粒子群算法优化的BP网络进行值预测
w1_1=xm1(1:inputnum*hiddennum);
B1_1=xm1(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2_1=xm1(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2_1=xm1(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);

net1.iw{
   
   1,1}=reshape(w1_1,hiddennum,inputnum);
net1.lw{
   
   2,1}=reshape(w2_1,outputnum,hiddennum);
net1.b{
   
   1}=reshape(B1_1,hiddennum,1);
net1.b{
   
   2}=reshape(B2_1,outputnum,1);

% % 用模拟退火粒子群算法优化的BP网络进行值预测
w1_2=xm2(1:inputnum*hiddennum);
B1_2=xm2(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2_2=xm2(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2_2=xm2(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);

net2.iw{
   
   1,1}=reshape(w1_2,hiddennum,inputnum);
net2.lw{
   
   2,1}=reshape(w2_2,outputnum,hiddennum);
net2.b{
   
   1}=reshape(B1_2,hiddennum,1);
net2.b{
   
   2}=reshape(B2_2,outputnum,1);

% 用混沌模拟退火粒子群算法优化的BP网络进行值预测
w1_3=xm3(1:inputnum*hiddennum);
B1_3=xm3(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2_3=xm3(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2_3=xm3(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);

net3.iw{
   
   1,1}=reshape(w1_3,hiddennum,inputnum);
net3.lw{
   
   2,1}=reshape(w2_3,outputnum,hiddennum);
net3.b{
   
   1}=reshape(B1_3,hiddennum,1);
net3.b{
   
   2}=reshape(B2_3,outputnum,1);

%% BP网络训练
%粒子群网络进化参数
net1.trainParam.epochs=100;
net1.trainParam.lr = 0.1;
net1.trainParam.goal=1e-3; % 训练目标误差
% 
%模拟退火粒子群网络进化参数
net2.trainParam.epochs=100;
net2.trainParam.lr=0.1;
net2.trainParam.goal=1e-6;

%混沌模拟退火粒子群网络进化参数
net3.trainParam.epochs=100;
net3.trainParam.lr=0.1;
net3.trainParam.goal=1e-3;

% 训练网络
net1 = train(net1,p_train,t_train); % 粒子群
net2 = train(net2,p_train,t_train); % 模拟退火粒子群
net3 = train(net3,p_train,t_train); % 混沌模拟退火粒子群

%% 仿真测试
%% 训练集
test_sim11 = sim(net1,p_train); % 粒子群
test_sim22 = sim(net2,p_train); % 模拟退火粒子群
test_sim33 = sim(net3,p_train); % 混沌模拟退火粒子群

% 输出数据反归一化,Test_sim为测试数据通过神经网络的预测输出值
Test_sim11 = mapminmax('reverse',test_sim11,ps_output); % 粒子群
Test_sim22 = mapminmax('reverse',test_sim22,ps_output); % 模拟退火粒子群
Test_sim33 = mapminmax('reverse',test_sim33,ps_output); % 混沌模拟退火粒子群
%% 测试集
test_sim1 = sim(net1,p_test); % 粒子群
test_sim2 = sim(net2,p_test); % 模拟退火粒子群
test_sim3 = sim(net3,p_test); % 混沌模拟退火粒子群

% 输出数据反归一化,Test_sim为测试数据通过神经网络的预测输出值
Test_sim1 = mapminmax('reverse',test_sim1,ps_output); % 粒子群
Test_sim2 = mapminmax('reverse',test_sim2,ps_output); % 模拟退火粒子群
Test_sim3 = mapminmax('reverse',test_sim3,ps_output); % 混沌模拟退火粒子群

%% 算法结果分析 
%%  均方根误差
%MM=size(T_train,2);
%NN=size(T_test,2);
error11 = sqrt(sum((Test_sim11 - T_train).^2) ./ MM);
error22 = sqrt(sum((Test_sim22 - T_train).^2) ./ MM);
error33 = sqrt(sum((Test_sim33 - T_train).^2) ./ MM);
error1 = sqrt(sum((Test_sim1 - T_test ).^2) ./ NN);
error2 = sqrt(sum((Test_sim2 - T_test ).^2) ./ NN);
error3 = sqrt(sum((Test_sim3 - T_test ).^2) ./ NN);
%%  查看网络结构
%analyzeNetwork(net)




%%  相关指标计算
%  R2
disp(['PSO-BP训练集数据的RMSE为:', num2str(error11)])
disp(['SAPSO-BP训练集数据的RMSE为:', num2str(error22)])
disp(['CSAPSO-BP训练集数据的RMSE为:', num2str(error33)])
disp(['PSO-BP测试集数据的RMSE为:', num2str(error1)])
disp(['SAPSO-BP测试集数据的RMSE为:', num2str(error2)])
disp(['CSAPSO-BP测试集数据的RMSE为:', num2str(error3)])

R11 = 1 - norm(T_train - Test_sim11)^2 / norm(T_train - mean(T_train))^2;
R22 = 1 - norm(T_train - Test_sim22)^2 / norm(T_train - mean(T_train))^2;
R33 = 1 - norm(T_train - Test_sim33)^2 / norm(T_train - mean(T_train))^2;
R1 = 1 - norm(T_test  - Test_sim1)^2 / norm(T_test  - mean(T_test ))^2;
R2 = 1 - norm(T_test  - Test_sim2)^2 / norm(T_test  - mean(T_test ))^2;
R3 = 1 - norm(T_test  - Test_sim3)^2 / norm(T_test  - mean(T_test ))^2;
disp(['PSO-BP训练集数据的R2为:', num2str(R11)])
disp(['SAPSO-BP训练集数据的R2为:', num2str(R22)])
disp(['CSAPSO-BP训练集数据的R2为:', num2str(R33)])
disp(['PSO-BP测试集数据的R2为:', num2str(R1)])
disp(['SAPSO-BP测试集数据的R2为:', num2str(R2)])
disp(['CSAPSO-BP测试集数据的R2为:', num2str(R3)])

%  MAE
mae11 = sum(abs(Test_sim11 - T_train)) ./ MM ;
mae22 = sum(abs(Test_sim22 - T_train)) ./ MM ;
mae33 = sum(abs(Test_sim33 - T_train)) ./ MM ;
mae1 = sum(abs(Test_sim1 - T_test )) ./ NN ;
mae2 = sum(abs(Test_sim2 - T_test )) ./ NN ;
mae3 = sum(abs(Test_sim3 - T_test )) ./ NN ;

disp(['PSO-BP训练集数据的MAE为:', num2str(mae11)])
disp(['SAPSO-BP训练集数据的MAE为:', num2str(mae22)])
disp(['CSAPSO-BP训练集数据的MAE为:', num2str(mae33)])
disp(['PSO-BP测试集数据的MAE为:', num2str(mae1)])
disp(['SAPSO-BP测试集数据的MAE为:', num2str(mae2)])
disp(['CSAPSO-BP测试集数据的MAE为:', num2str(mae3)])

%  MAPE   mape = mean(abs((YReal - YPred)./YReal));

mape11 = mean(abs((T_train - Test_sim11)./T_train));  
mape22 = mean(abs((T_train - Test_sim22)./T_train)); 
mape33 = mean(abs((T_train - Test_sim33)./T_train)); 
mape1 = mean(abs((T_test - Test_sim1 )./T_test));      
mape2 = mean(abs((T_test - Test_sim2 )./T_test)); 
mape3 = mean(abs((T_test - Test_sim3)./T_test)); 

disp(['PSO-BP训练集数据的MAPE为:', num2str(mape11)])
disp(['SAPSO-BP训练集数据的MAPE为:', num2str(mape22)])
disp(['CSAPSO-BP训练集数据的MAPE为:', num2str(mape33)])
disp(['PSO-BP测试集数据的MAPE为:', num2str(mape1)])
disp(['SAPSO-BP测试集数据的MAPE为:', num2str(mape2)])
disp(['CSAPSO-BP测试集数据的MAPE为:', num2str(mape3)])

save result





figure()
t = 1:M;
plot(t,Pbest1,'b',t,Pbest2,'g',t,Pbest3,'r');
title('算法收敛过程');
xlabel('进化代数');
ylabel('最小均方误差值(MSE值)');
legend('基本粒子群算法','模拟退火粒子群算法','混沌模拟退火粒子群算法');


%%  绘图
%[0.00,0.45,0.74] //蓝
%[0.85,0.33,0.10] //橙红
%[0.93,0.69,0.13] //橙黄
%[0.72,0.27,1]    //淡紫
%[0.47,0.67,0.19] //淡绿
figure()

plot( 1: MM, T_train, 'k-*', 'LineWidth', 1.5)
hold on
plot( 1: MM, Test_sim11, 'Color', [0.93,0.69,0.13],'LineWidth', 1.5)
hold on
plot( 1: MM, Test_sim22, 'Color',[0.85,0.33,0.10], 'LineWidth', 1.5)
hold on
plot( 1: MM, Test_sim33,'Color',[0.00,0.45,0.74], 'LineWidth', 1.5)
legend('真实值', 'PSO-BP预测值', 'SAPSO-BP预测值', 'CSAPSO-BP预测值')
xlabel('训练样本')
ylabel('预测结果')
string = {
   
   '训练集预测结果对比'};
title(string)
xlim([1, MM])
grid

figure()
plot( 1: NN, T_test, 'k-*', 'LineWidth', 1.5)
hold on
plot( 1: NN, Test_sim1, 'Color', [0.93,0.69,0.13],'LineWidth', 1.5)
hold on
plot( 1: NN, Test_sim2, 'Color',[0.85,0.33,0.10], 'LineWidth', 1.5)
hold on
plot( 1: NN, Test_sim3,'Color',[0.00,0.45,0.74], 'LineWidth', 1.5)
legend('真实值', 'PSO-BP预测值', 'SAPSO-BP预测值', 'CSAPSO-BP预测值')
xlabel('测试样本')
ylabel('预测结果')
string = {
   
   '测试集预测结果对比'};
title(string)
xlim([1, NN])
grid

save result

三、代码获取

获取细则详见主页置顶文章。

私信回复“59期”即可获取下载链接。

相关文章
|
14天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
11天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
22天前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
136 31
|
1月前
|
算法 调度 云计算
云计算任务调度优化matlab仿真,对比蚁群优化和蛙跳优化
本程序针对云计算任务调度优化问题,旨在减少任务消耗时间、提升经济效益并降低设备功耗。通过对比蚁群优化算法(ACO)与蛙跳优化算法(SFLA),分别模拟蚂蚁信息素路径选择及青蛙跳跃行为,在MATLAB2022A环境下运行测试。核心代码实现任务分配方案的动态调整与目标函数优化,结合任务集合T与服务器集合S,综合考量处理时间与能耗等约束条件,最终输出优化结果。两种算法各具优势,为云计算任务调度提供有效解决方案。
|
1月前
|
算法 安全 数据安全/隐私保护
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
|
1月前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
1月前
|
算法 数据可视化 调度
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。

热门文章

最新文章