案例分析|Python使用嵌套循环实现图像处理算法

简介: 本案例的是通过图像处理算法案例,深入了解Python数据结构和基本算法流程。

640 (5).jpg

01、图像的数据结构概述

使用Python第三方图像处理库Pillow处理图像时,通常是调用模块中提供的函数和对象来实现图像的基本处理。

实际上,在“底层”图像是由像素点组成的二维数组,每个像素点的位置表示为两个整数的元组,像素的值根据图像模式由对应的元组组成(例如,RGB模式表示为三个整数值组成的元组,分别表示构成颜色的红、蓝、绿的值,范围为0到255)。

图像处理的算法(例如,复制、旋转、裁剪和平滑图像等)根本上就是使用嵌套循环模式对这些像素进行处理。PIL.Image模块中的Image类的方法getpixel()和putpixel()可以用于读取和修改特定位置(loc)的像素的颜色值(pix)。其语法格式如下:

im.getpixel(loc) #返回位于位置loc的像素的颜色。

im.putpixel(loc, pix) #把位于位置loc的颜色替换为pix。

02、拷贝图像

拷贝图像的算法可以通过打开原始图像,创建一个新的大小相同的空白图像,然后将旧图像中的像素颜色复制到新图像相应的像素中。即使用嵌套循环,把旧图像位置(i, j)的像素复制到新图像的位置(i, j)。

【例1】实现图像拷贝函数copy(),输入原始图像对象,返回拷贝后的图像对象。

#模块:c:\pythonpa\cs\image_process.py
import PIL.Image
def copy(im):
    """返回拷贝后的图像对象"""
    # 创建与原始图像相同模式和大小的新图像对象
    im_new = PIL.Image.new(im.mode, im.size)
    width, height = im.size
    # 使用嵌套循环,把旧图像位置(i, j)的像素复制到新图像的位置(i, j)
    for i in range(0, width):
        for j in range(0, height):
            pix = im.getpixel((i,j))
            im_new.putpixel((i,j), pix)
    return im_new
#测试代码
if __name__ == "__main__":
    im = PIL.Image.open("c:/pythonpa/cs/img/mandrill.jpg")
    copy(im).show()

03、剪裁图像

剪裁图像的算法可以通过打开原始图像,指定一个四元组的剪裁框,创建一个与剪裁框大小相同的空白图像,然后将旧图像中剪裁框内的像素颜色复制到新图像中。同样可以使用嵌套循环实现像素复制。

【例2】实现图像剪裁函数crop(),输入原始图像对象,返回剪裁后的图像对象。

#模块:c:\pythonpa\cs\image_process.py
import PIL.Image
def crop(im, box):
    """返回使用矩形框剪切后的图像对象"""
    # 剪切框定义左上角和右下角坐标位置
    x1,y1,x2,y2 = box
    # 计算新图像的宽度width和高度height,并创建新图像
    width,height = x2-x1, y2-y1
    im_new = PIL.Image.new(im.mode, (width, height))
    # 使用嵌套循环,把旧图像剪切框内的像素拷贝到新图像
    for i in range(width):
        for j in range(height):
            pix = im.getpixel((x1+i,y1+j))
            im_new.putpixel((i,j), pix)
    return im_new
#测试代码
if __name__ == "__main__":
    im = PIL.Image.open("c:/pythonpa/cs/img/mandrill.jpg")
    crop(im).show()

04、水平或垂直翻转图像

水平或垂直翻转的算法可以通过打开原始图像,创建一个新的大小相同的空白图像,然后将旧图像中的像素颜色复制到新图像相应的像素中。水平翻转时,原始图像的像素(i,j)映射到目标图像的位置(width-i-1,j);垂直翻转时,原始图像的像素(i,j)映射到目标图像的位置(i,height-j-1)。

【例3】实现图像水平或垂直翻转函数flip(),输入原始图像对象,返回水平或垂直翻转后的图像对象。

#模块:c:\pythonpa\cs\image_process.py
import PIL.Image
def flip(im, orient="H"):
    """返回水平或垂直翻转后的图像对象"""

    # 获取图像的宽度width和高度height,并创建新图像
    width,height = im.size
    im_new = PIL.Image.new(im.mode, im.size)
    # 使用嵌套循环,把旧图像的像素拷贝到新图像对应位置
    for i in range(width):
        for j in range(height):
            pix = im.getpixel((i,j))
            if orient == "H": #水平翻转时
                # 原始图像的像素(i,j)映射到目标图像的位置(width-i-1,j)
                im_new.putpixel((width-i-1,j), pix)
            else: #垂直翻转时
                # 原始图像的像素(i,j)映射到目标图像的位置(i,height-j-1)
                im_new.putpixel((i,height-j-1), pix)
    return im_new
#测试代码
if __name__ == "__main__":
    im = PIL.Image.open("c:/pythonpa/cs/img/mandrill.jpg")
    flip(im, orient="H").show()
    flip(im, orient="V").show()

05、逆时针或顺时针旋转图像90度

逆时针或顺时针旋转图像90度的算法可以通过打开原始图像(width×height),创建一个新的height×width大小的空白图像,然后将旧图像中的像素颜色复制到新图像中相应的像素中。逆时针旋转图像90度时,原始图像的像素(i,j)映射到目标图像的位置(j,width-i-1);顺时针旋转图像90度,原始图像的像素(i,j)映射到目标图像的位置(height-j-1,i)。

【例4】实现图像逆时针或顺时针旋转90度的函数rotate(),输入原始图像对象,返回逆时针或顺时针旋转90度后的图像对象。

#模块:c:\pythonpa\cs\image_process.py
import PIL.Image
def rotate(im, orient="CC"):
    """返回逆时针或顺时针旋转90度后的图像对象"""

    # 获取图像的宽度width和高度height,并创建新图像
    width,height = im.size
    im_new = PIL.Image.new(im.mode, im.size)
    # 使用嵌套循环,把旧图像的像素拷贝到新图像对应位置
    for i in range(0, width):
        for j in range(0, height):
            pixel = im.getpixel((i,j))
            if orient == "CC": #逆时针针旋转90度时
                # 原始图像的像素(i,j)映射到目标图像的位置(j,width-i-1)
                im_new.putpixel((j, width-i-1), pixel)
            else: #顺时针旋转90度时
                # 原始图像的像素(i,j)映射到目标图像的位置(height-j-1,i)
                im_new.putpixel((height-j-1, i), pixel)
    return im_new
#测试代码
if __name__ == "__main__":
    im = PIL.Image.open("c:/pythonpa/cs/img/mandrill.jpg")
    rotate(im, orient="H").show()
    rotate(im, orient="V").show()

06、平滑图像过滤器

图像过滤器是原始图像中靠近位置(i, j)的多个像素颜色以某种方式组合运算形成的新的图像对象。

例如,简单的平滑过滤器算法可以通过打开原始图像,创建一个新的大小相同的空白图像,然后将将新图像中的每个像素(i, j)的颜色设置为原始像素(i, j)及其相邻像素的颜色的平均值。不位于图像边界上像素(i, j)有8个相邻像素,其相邻像素位于从列i – 1到列i + 1和行j + 1到行j + 1范围。故可以通过下列代码计算新图像中像素(i, j)的颜色:原始图像中像素(i, j)和它的邻居像素的颜色的平均值。注意,如果像素位于边缘,在i-1可能小于0,故可以使用max(i-1, 0)作为下限;同样,可以使用min(i+1, width)作为上限。

【例5】实现平滑图像过滤器函数smooth(),输入原始图像对象,返回平滑过滤后的图像对象。

#模块:c:\pythonpa\cs\image_process.py
import PIL.Image
def smooth(im):
    """返回拷贝后的图像对象"""
    # 创建与原始图像相同模式和大小的新图像对象
    im_new = PIL.Image.new(im.mode, im.size)
    width, height = im.size
    # 使用嵌套循环,把旧图像位置(i, j)的像素复制到新图像的位置(i, j)
    for i in range(0, width):
        for j in range(0, height):
            pix = im.getpixel((i,j))
            im_new.putpixel((i,j), pix)
    return im_new
#测试代码
if __name__ == "__main__":
    im = PIL.Image.open("c:/pythonpa/cs/img/mandrill.jpg")
    smooth(im).show()
目录
相关文章
|
19小时前
|
机器学习/深度学习 算法 数据挖掘
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-2
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
15 1
|
5天前
|
算法 数据可视化 Python
Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现
Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现
|
5天前
|
数据可视化 算法 数据挖掘
PYTHON实现谱聚类算法和改变聚类簇数结果可视化比较
PYTHON实现谱聚类算法和改变聚类簇数结果可视化比较
|
5天前
|
vr&ar Python
Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列4
Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列
28 0
|
5天前
|
机器学习/深度学习 算法 数据可视化
python用支持向量机回归(SVR)模型分析用电量预测电力消费
python用支持向量机回归(SVR)模型分析用电量预测电力消费
27 7
|
机器学习/深度学习 算法 Python
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户
16 0
|
6天前
|
算法 数据可视化 Python
Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例
Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例
11 0
|
6天前
|
数据挖掘 计算机视觉 Python
SciPy图像处理技巧:图像增强与特征提取
【4月更文挑战第17天】本文介绍了如何使用SciPy进行图像增强和特征提取。通过调整亮度、对比度和伽马校正实现图像增强,示例代码展示了相关操作。同时,利用Sobel算子进行边缘检测和Laplacian of Gaussian (LoG) 进行角点检测,以提取图像特征。虽然SciPy不是专业的图像处理库,但其数值计算能力在图像分析中仍有一定价值,可与其他图像处理库结合使用。
|
6天前
|
机器学习/深度学习 算法 Python
使用Python实现集成学习算法:Bagging与Boosting
使用Python实现集成学习算法:Bagging与Boosting
17 0
|
6天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据处理与分析
【4月更文挑战第13天】Python在数据处理与分析中扮演重要角色,常用库包括Pandas(数据处理)、NumPy(数值计算)、Matplotlib和Seaborn(数据可视化)、SciPy(科学计算)、StatsModels(统计建模)及Scikit-learn(机器学习)。数据处理流程涉及数据加载、清洗、探索、特征工程、模型选择、评估与优化,以及结果展示。选择哪个库取决于具体需求和数据类型。
15 1

热门文章

最新文章