【状态估计】基于卡尔曼滤波器和扩展卡尔曼滤波器用于 INS/GNSS 导航、目标跟踪和地形参考导航研究(Matlab代码实现)

简介: 【状态估计】基于卡尔曼滤波器和扩展卡尔曼滤波器用于 INS/GNSS 导航、目标跟踪和地形参考导航研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


2.1 算例1



2.2 算例2


2.3 算例3


🎉3 参考文献


🌈4 Matlab代码及数据


💥1 概述

EKF 是卡尔曼滤波器在非线性系统中的应用的推广延伸,其离散非线性系统的状态和测量方程表示为:


1b4e7c01f953451b96d5c4e8a202059c.png


EKF 原理如图 1 所示。


094c3f858f3d4b48b213a9f57cd9963c.png


EKF 主要包含时间更新(预测)与测量更新(校正)两个阶段。 时间更新包含以下部分:


ddbb5ed9a92e427a8180014a1d4e1d31.png


卡尔曼滤波器法原理由射影定理推导而来,能在线性高斯模型的情况下对目标状态做出最优估计,但实际系统多为非线性系统[83]。为解决非线性系统滤波问题,常用处理方法是将其看作一个近似的线性滤波问题。目前应用较多的是 EKF,其核心思想是在滤波值处将非线性函数和进行一阶泰勒级数展开,并忽略其高阶项,得到局部线性化模型,然后再应用 KF 进行滤波估计。


📚2 运行结果

2.1 算例1


5e9c018e328a4ee896ba79e5e4faa384.png

5fd6d4bbeb594f5d955373953396fe31.png

ac48ed8595654a279736c80b1e2fc4e4.png


2.2 算例2


8074ced23c844fb9a994c8e120857525.png

7b2c4a9dd5584fbc86ebd6498ac02a29.png


2.3 算例3


369c7595fb4341a9a4d2f18d50c85213.png

7507c9c772fc435d9920552c88b8b042.png

c4fd697e406a4f69bd73bb74eb9f4b91.png


部分代码:

N = 20; % number of time steps
dt = 1; % time between time steps
M = 100; % number of Monte-Carlo runs
sig_acc_true = [0.3; 0.3; 0.3]; % true value of standard deviation of accelerometer noise
sig_gps_true = [3; 3; 3; 0.03; 0.03; 0.03]; % true value of standard deviation of GPS noise
sig_acc = [0.3; 0.3; 0.3]; % user input of standard deviation of accelerometer noise
sig_gps = [3; 3; 3; 0.03; 0.03; 0.03]; % user input of standard deviation of GPS noise
Q = [diag(0.25*dt^4*sig_acc.^2), zeros(3); zeros(3), diag(dt^2*sig_acc.^2)]; % process noise covariance matrix
R = [diag(sig_gps(1:3).^2), zeros(3); zeros(3), diag(sig_gps(4:6).^2)]; % measurement noise covariance matrix
F = [eye(3), eye(3)*dt; zeros(3), eye(3)]; % state transition matrix
B = [0.5*eye(3)*dt^2; eye(3)*dt]; % control-input matrix
H = eye(6); % measurement matrix
%% true trajectory
x_true = zeros(6,N+1); % true state
a_true = zeros(3,N);   % true acceleration
x_true(:,1) = [0; 0; 0; 5; 5; 0]; % initial true state
for k = 2:1:N+1
    x_true(:,k) = F*x_true(:,k-1) + B*a_true(:,k-1);
end
%% Kalman filter simulation
res_x_est = zeros(6,N+1,M); % Monte-Carlo estimates
res_x_err = zeros(6,N+1,M); % Monte-Carlo estimate errors
P_diag = zeros(6,N+1); % diagonal term of error covariance matrix
% filtering
for m = 1:1:M
    % initial guess
    x_est(:,1) = [2; -2; 0; 5; 5.1; 0.1];
    P = [eye(3)*4^2, zeros(3); zeros(3), eye(3)*0.4^2];
    P_diag(:,1) = diag(P);
    for k = 2:1:N+1
        %%% Prediction
        % obtain acceleration output
        u = a_true(:,k-1) + normrnd(0, sig_acc_true);
        % predicted state estimate
        x_est(:,k) = F*x_est(:,k-1) + B*u;
        % predicted error covariance
        P = F*P*F' + Q;
        %%% Update
        % obtain measurement
        z = x_true(:,k) + normrnd(0, sig_gps_true);
        % measurement residual


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]彭剑,刘东文.改进扩展卡尔曼滤波器的PMSM参数辨识[J].现代信息科技,2023,7(10):66-69.DOI:10.19850/j.cnki.2096-4706.2023.10.017.


[2]廖楷娴. 改进扩展卡尔曼滤波器的永磁同步风力发电机参数辨识[D].湖南工业大学,2022.DOI:10.27730/d.cnki.ghngy.2022.000263.


🌈4 Matlab代码及数据


相关文章
|
6月前
|
机器学习/深度学习 算法
m基于深度学习的64QAM调制解调系统频偏估计和补偿算法matlab仿真
### 算法仿真结果 展示5张图像,描绘了基于深度学习的频偏估计和补偿在MATLAB 2022a中的仿真效果。 ### 理论概要 - 深度学习算法用于建立信号与频偏的非线性映射,无需导频,节省资源。 - 网络模型(如CNN或RNN)处理IQ数据,提取特征,简化估计补偿过程,降低复杂度。 - 64QAM系统中,通过神经网络实现精确频偏感知,增强通信性能。 ### MATLAB核心程序 - 代码生成64QAM信号,模拟不同SNR和频偏条件,使用深度学习进行相位估计和补偿。 - 仿真比较了有无补偿的误码率,显示补偿能显著改善通信质量。 ```
88 1
|
6月前
|
传感器 算法 Go
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
|
6月前
|
算法
m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。
70 1
|
3月前
|
算法 数据安全/隐私保护 计算机视觉
基于粒子滤波和帧差法的目标跟踪matlab仿真
本项目展示一种结合粒子滤波与帧差法的目标跟踪技术,在Matlab 2013b上实现。通过帧间差异检测运动目标,并利用粒子滤波优化跟踪精度。改进后的重采样方法提升了算法表现。核心代码详尽并附中文注释及操作指南。理论方面,帧差法通过对比连续帧识别移动对象;粒子滤波则基于一组随机粒子估计目标状态,两者结合有效应对复杂场景,如背景杂乱或光照变化,确保跟踪稳定可靠。
|
5月前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
5月前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
102 8
|
5月前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
59 0
|
5月前
|
资源调度 SoC
基于UKF无迹卡尔曼滤波的电池Soc估计matlab仿真
**摘要:** 使用MATLAB2022a,基于UKF的电池SOC估计仿真比较真实值,展示非线性滤波在电动车电池管理中的效用。电池电气模型描述电压、电流与SoC的非线性关系,UKF利用无迹变换处理非线性,通过预测和更新步骤实时估计SoC,优化状态估计。尽管UKF有效,但依赖准确模型参数。
|
6月前
|
数据可视化 Python
Matlab正态分布、历史模拟法、加权移动平均线 EWMA估计风险价值VaR和回测标准普尔指数 S&P500时间序列
Matlab正态分布、历史模拟法、加权移动平均线 EWMA估计风险价值VaR和回测标准普尔指数 S&P500时间序列
105 11
|
6月前
|
机器学习/深度学习 算法
m基于深度学习的QPSK调制解调系统频偏估计和补偿算法matlab仿真
MATLAB 2022a中展示了基于深度学习的QPSK调制解调系统频偏估计和补偿算法仿真结果。该算法运用神经网络模型实时估计并补偿无线通信中的频率偏移。QPSK调制将二进制信息映射到四个相位状态,解调通常采用相干解调。深度学习算法通过预处理、网络结构设计、损失函数选择和优化算法实现频偏估计。核心程序生成不同SNR下的信号,比较了有无频偏补偿的误码率,显示了补偿效果。
82 1