基于离散时间频率增益传感器的P级至M级PMU模型的实现(Matlab代码实现)

简介: 基于离散时间频率增益传感器的P级至M级PMU模型的实现(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥

🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳ 座右铭:行百里者,半于九十。

📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

低复杂度高精度P级到M级渐进式PMU模型,由Krzysztof Duda和Tomasz P. Zieliński设计。


基于离散时间频率增益传感器(DTFGT)和正弦斜率滤波器的P级至M级渐进式PMU模型的实现,以及在IEC/IEEE 60255-118-1标准动态调制测试中的应用。


📚2 运行结果


e946bd149b925b5f01377533286bd3c9.png


75f1e6044f3ad12ceb467add2dc56f4b.png


部分代码:

figure,
subplot(1,2,1), hold on
plot(fm, err_TVE_dF)
legend(text_legend_const,'Location','southeast')
xlabel('F_i_n (Hz)'), ylabel('TVE (%) for straightforward A and \phi estimation')
title(text_title)
set(gca,'YScale','log'),
axis tight, box on, grid on
subplot(1,2,2), hold on
plot(fm, err_TVE_dF_LS, '-')
legend(text_legend_const,'Location','southeast')
xlabel('F_i_n (Hz) '), ylabel('TVE (%) for LS based A and \phi estimation')
title(text_title)
set(gca,'YScale','log'),
axis tight, box on, grid on
figure,
subplot(1,2,1), hold on
plot(fm, err_Om_dF, '-')
legend(text_legend_const,'Location','southeast')
xlabel('F_i_n (Hz)'), ylabel('FE (Hz)'), title(text_title)
set(gca,'YScale','log'),
axis tight, box on, grid on
subplot(1,2,2), hold on
plot(fm, err_Rocof_dF_LS, '-')
legend(text_legend_const,'Location','southeast')
xlabel('F_i_n (Hz)'), ylabel('RFE (Hz/s)'), title(text_title)
set(gca,'YScale','log'),
axis tight, box on, grid on
end
%###########################################################
function [Phasor, PhasorLS, Omr, ROCOFr] = PMU(x, P, N0, F0)
% PMU implementation with a cascade of rectangular filters
% and the Discrete-Time Frequency-Gain Transducer (DTFGT)
% with the sine-shape slope filter
% x - sinusoidal signal x=A*cos(Om*n+p)
% P - number of rectangular filters in the prefilter cascade
% Phasor - estimated complex phasor reported at nominal frequency with straightforward amplitude and phase estimation
% PhasorLS - estimated complex phasor reported at nominal frequency with LS based amplitude and phase estimation
% Omr - estimated frequency in radians reported at nominal frequency
% ROCOFr - estimated ROCOF in radians per second reported at nominal frequency
Nx = length(x);
Fs = N0*F0; %Hz
t = (0:Nx-1)/Fs;
y = x.*exp(-1i*2*pi*F0*t); % down-shifted sinusoidal signal x=A*cos(Om*n+p), Om=2*pi*f0/fs
%% for LS solution
ND2 = N0/2-1; % only one nominal period, although it could be more for longer cascade
ND1 = -N0/2;
%% sin frequency slope h = [1/2 0 -1/2];
w0= pi/(N0/2);
L = N0/4;
h = [1/2 zeros(1,L-1) 0 zeros(1,L-1) -1/2];
%%
tr = 1:N0:Nx; % reporting times
Phasor = zeros(length(tr), P);
PhasorLS = zeros(length(tr), P);
Omr = zeros(length(tr), P);
ROCOFr = zeros(length(tr), P);
r0 = ones(1,N0)/N0; rp = 1;
for ind=1:P


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Krzysztof Duda (2023). P2M_PMU


🌈4 Matlab代码实现

相关文章
|
6月前
|
传感器 算法 Go
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
|
4月前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
4月前
|
传感器 监控 算法
基于虚拟力优化的无线传感器网络覆盖率matlab仿真
**摘要:** 本文探讨了基于虚拟力优化提升无线传感器网络(WSNs)覆盖率的方法。通过在MATLAB2022a中仿真,显示了优化前后网络覆盖率对比及收敛曲线。虚拟力优化算法模拟物理力,以优化传感器节点布局,防止重叠并吸引至目标区域,同时考虑墙壁碰撞。覆盖计算利用平面扫描法评估圆形和正方形传感器的覆盖范围。算法通过迭代优化网络性能,以提高WSNs的监控能力。
|
4月前
|
传感器 算法
基于无线传感器网络的LC-DANSE波束形成算法matlab仿真
摘要: 此MATLAB程序对比了LC-DANSE与LCMV波束形成算法在无线传感器网络中的性能,基于SNR和MSE指标。测试在MATLAB 2022a环境下进行。核心代码涉及权重更新迭代,用于调整传感器节点权重以增强目标信号。LC-DANSE是分布式自适应算法,关注多约束条件下的噪声抑制;LCMV则是经典集中式算法,侧重单个期望信号方向。两者在不同场景下各有优势。程序结果显示SNR和MSE随迭代变化趋势,并保存结果数据。
|
6月前
|
机器学习/深度学习 传感器 数据可视化
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
|
机器学习/深度学习 传感器 算法
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
|
机器学习/深度学习 传感器 算法
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
199 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码