Linux系统应用编程---进程原语(fork、exec、wait&waitpid)

简介: Linux系统应用编程---进程原语(fork、exec、wait&waitpid)

fork

子进程复制父进程的0到3g空间和父进程内核中的PCB,但id号不同。

程序一讲解:

1. #include <stdio.h>
2. #include <sys/types.h>
3. #include <unistd.h>
4. 
5. int main(void)
6. {     
7. //fork创建一个新进程
8.        pid_t p1 = -1;
9. 
10. //fork之前的操作只有父父进程才有
11.        p1 = fork();    //调用一次fork函数会返回两次
12. 
13. if(p1 == 0)
14.        {
15. //这里一定是子进程
16. //先sleep一下,让父进程先死
17.               sleep(1);
18. 
19.               printf("子进程, pid = %d.\n", getpid());
20.               printf("子进程, p1 = %d.\n", p1);
21.               printf("子进程中父进程的ID = %d.\n", getppid());
22.        }
23. if(p1 > 0)
24.        {
25. //这里一定是父进程
26.               printf("父进程, pid = %d.\n", getpid());
27.               printf("父进程, p1 = %d.\n", p1);
28.        }
29. 
30. if(p1 < 0)
31.        {
32. 
33. //这里一定是出错了
34.        }
35. 
36. //在这里的操作,父子进程都有
37. //printf("hello world, pid = %d.\n", getpid());
38. 
39. return 0;
40. }

输出结果如下

结论:

(1)fork函数调用一次会返回两次,返回值等于0的就是子进程,返回值大于0的就是父进程

(2)fork的返回值在子进程中等于0, 在父进程中返回值等于本次fork创建的子进程的PID

(3)这里在子进程中打印父进程PID,为什么跟在父进程中打印父进程的PID结果不一样?

是因为在执行的时候,父进程先执行完,然后子进程就没有父进程了;这是在子进程中打印的父进程PID就是init进程

 

程序二讲解:

1. #include <stdio.h>
2. #include <unistd.h>
3. #include <stdlib.h>
4. #include <sys/types.h>
5. 
6. int main(void)
7. {
8.        pid_t pid ;
9. //调用一次返回2次,在父进程返回子进程的PID,在子进程中返回0
10. 
11.        int n = 10;
12.        pid = fork();
13. 
14. if(pid > 0)
15.        {/*in parent*/
16.               while(1)
17.               {
18.                      printf("I am parent %d\n", n++);
19.                      printf("my pid = %d.\n", getpid());
20.                      printf("my parent pid = %d.\n", getppid());
21.                      sleep(1);
22.               }
23.        }
24. 
25. else if(pid == 0)
26.        {/*in child*/
27.               while(1)
28.               {
29.                      printf("I am child %d\n", n++);
30.                      printf("my pid = %d.\n", getpid());
31.                      printf("my parent pid = %d.\n", getppid());
32.                      sleep(3);
33. 
34.               }
35.        }
36. 
37. else
38.        {
39.               perror("fork");
40. exit(0);
41.        }
42. 
43. return 0;
44. }

(1)父子进程中n值分别独立加,说明子进程从父进程中克隆过来的数据,已经不是共享的了。两者有自己独立的空间。

(20-3G放应用层代码,子进程直接从父进程中拷贝,3-4G是内核空间

(3)读时共享,写时复制(copy on write)(好处:节省物理内存开销,省去直接复制的时间)

fork创建了子进程之后,调用exec函数执行子进程

 

exec函数

      用fork创建子进程后执行的是和父进程相同的程序,可以通过if判断pid的返回值让子进程执行不同的代码分支,这样设计程序不灵活。通过调用exec函数,用新程序将子进程的用户空间代码和数据替换,直接去执行新程序。调用exec并不创建新进程,所以调用exec前后该进程的id并未改变。

其实有六种以exec开头的函数,统称exec函数:

1. #include <unistd.h>
2. 
3. int execl(const char *path, const char *arg, ...);
4. 
5. int execlp(const char *file, const char *arg, ...);
6. 
7. int execle(const char *path, const char *arg, ..., char *const envp[]);
8. 
9. int execv(const char *path, char *const argv[]);
10. 
11. int execvp(const char *file, char *const argv[]);
12. 
13. int execve(const char *path, char *const argv[], char *const envp[]);

这些函数如果调用成功则加载新的程序从启动代码开始执行,不再返回,如果调用出错

则返回-1,所以exec函数只有出错的返回值而没有成功的返回值。

 

程序1:

1. #include <stdio.h>
2. #include <unistd.h>
3. 
4. 
5. int main(void)
6. {
7. printf("hello.\n");
8. execl("/bin/ls", "ls", "-l", NULL);
9. printf("world.\n");
10. return 0;
11. }

执行结果:

分析:

可以看到没有执行      printf(“world.\n”);

这是因为/bin/ls加载到用户用户空间替换了原来代码段,所以execl下面的代码就不会执行了。所以程序是从ls的return 0退出程序的。

 

函数辨析

execl与execlp

      execl("/bin/ls", "ls", "-l", NULL);

      execlp("ls", "ls", "-l", NULL);

execl要给全执行进程的路径,而execlp除了在当前路径下找,还可以去PATH环境变量底下找。p就是去环境变量底下找,不加p就是在当前路径下找,所以要给全路径

 

execv与execvp

这两个函数的功能跟excel与execlp的功能一样,只是将参数列表以数组指针的方式给出。

还是用上面执行ls举例

char *argvv[] = {“ls”, “-l”, NULL};

execv(“/bin/ls”, argvv);                execvp(“ls”, argvv);

 

execle execve中添加了一个替换环境变量的参数,在加载新的程序的时候,我们可以不用原来的环境变量。(这两个函数实际用的很少)

 

wait & waitpid

僵尸进程

(1)子进程先于父进程结束。子进程结束后父进程此时并不一定立即就能帮子进程“收尸”,在这一段(子进程已经结束且父进程尚未帮其收尸)子进程就被称为僵尸进程。

(2)子进程除 task_struct 和栈外其余内存空间皆已清理

(3)父进程可以使用 wait 或 waitpid 以显式回收子进程的剩余待回收内存资源并且获取子进程退出状态。【父进程帮子进程收尸是要调用函数的】

(4)父进程也可以不使用 wait 或者 waitpid 回收子进程,此时父进程结束时一样会回收子进程的剩余待回收内存资源。(这样设计是为了防止父进程忘记显式调用 wait/waitpid 来回收子进程从而造成内存泄漏)

 

孤儿进程

(1)父进程先于子进程结束,子进程成为一个孤儿进程。

(2)linux 系统规定:所有的孤儿进程都自动成为一个特殊进程(进程 1,也就是 init 进程)的子进程。

1. #include <sys/types.h>
2. 
3. #include <sys/wait.h>
4. 
5. pid_t wait(int *status);
6. 
7. pid_t waitpid(pid_t pid, int *status, int options);

wait返回值:成功回收子进程,返回终止的子进程的pid,错误返回-1

(1)waitpid参数含义:

参数值

含义

pid<-1

等待进程组号为pid绝对值的任何子进程。

pid=-1

等待任何子进程,此时的waitpid()函数就退化成了普通的wait()函数。

pid=0

等待进程组号与目前进程相同的任何子进程,也就是说任何和调用waitpid()函数的进程在同一个进程组的进程。

pid>0

等待进程号为pid的子进程。

(2)int *status

这个参数将保存子进程的状态信息,有了这个信息父进程就可以了解子进程为什么会退出,是正常退出还是出了什么错误。如果status不是空指针,则状态信息将被写入寄存器指向的位置。当然,如果不关心子进程为什么推出的话,也可以传入空指针。

Linux提供了一些非常有用的宏来帮助解析这个状态信息,这些宏都定义在sys/wait.h头文件中。主要有以下几个:

说明

WIFEXITED(status)

如果子进程正常结束,它就返回真;否则返回假。

WEXITSTATUS(status)

如果WIFEXITED(status)为真,则可以用该宏取得子进程exit()返回的结束代码。

WIFSIGNALED(status)

如果子进程因为一个未捕获的信号而终止,它就返回真;否则返回假。

WTERMSIG(status)

如果WIFSIGNALED(status)为真,则可以用该宏获得导致子进程终止的信号代码。

WSTOPSIG(status)

如果当前子进程被暂停了,则返回真;否则返回假。

WIFSTOPPED(status)

如果WIFSTOPPED(status)为真,则可以使用该宏获得导致子进程暂停的信号代码。

(3)int options

参数options提供了一些另外的选项来控制waitpid()函数的行为。如果不想使用这些选项,则可以把这个参数设为0。主要使用的有以下两个选项:

参数

说明

WNOHANG

如果pid指定的子进程没有结束,则waitpid()函数立即返回0,而不是阻塞在这个函数上等待;如果结束了,则返回该子进程的进程号。

WUNTRACED

如果子进程进入暂停状态,则马上返回。

这些参数可以用“|”运算符连接起来使用。

如果waitpid()函数执行成功,则返回子进程的进程号;如果有错误发生,则返回-1,并且将失败的原因存放在errno变量中。

失败的原因主要有:没有子进程(errno设置为ECHILD),调用被某个信号中断(errno设置为EINTR)或选项参数无效(errno设置为EINVAL)

如果像这样调用waitpid函数:waitpid(-1, status, 0),这此时waitpid()函数就完全退化成了wait()函数。

 

程序1

1. #include <stdio.h>
2. #include <unistd.h>
3. #include <stdlib.h>
4. #include <sys/types.h>
5. #include <wait.h>
6. 
7. int main(void)
8. {
9.        pid_t pid, pid_c;
10. //调用一次返回2次,在父进程返回子进程的PID,在子进程中返回0
11. 
12.        int n = 10;
13.        pid = fork();
14. 
15. if(pid > 0)
16.        {/*in parent*/
17.               while(1)
18.               {
19.                      printf("I am parent pid = %d\n", getpid());
20.                      pid_c = wait(NULL);            //wait是一个阻塞函数,等待回收子进程资源
21. 
22. //如果没有子进程,wait返回-1
23.                      printf("wait for child %d.\n", pid_c);
24.                      sleep(1);
25.               }
26.        }
27. 
28. else if(pid == 0)
29.        {/*in child*/
30. //printf("I am child %d\n", n++);
31.               printf("I am child pid = %d.\n", getpid());
32. //printf("my parent pid = %d.\n", getppid());
33.               sleep(10);
34.        }
35. 
36. else
37.        {
38.               perror("fork");
39. exit(0);
40.        }
41. 
42. return 0;
43. }

编译之后,程序执行结果如下:

刚进来的时候打印一次父子进程的ID号,然后子进程slepp 10s,父进程执行wait等待回收子进程,阻塞在这里,直到子进程结束。子进程结束之后,wait的返回值就是-1.

僵尸进程对内存的影响:子进程如果没有回收,子进程占了一个PCB,浪费内存,造成内存泄露。

 

程序2:

1. #include <stdio.h>
2. #include <sys/types.h>
3. #include <unistd.h>
4. #include <wait.h>
5. 
6. 
7. int main(void)
8. {
9. 
10.        pid_t pid;
11. 
12.        int n = 3;
13. 
14.        while(n--)
15.        {
16.               pid = fork();
17. if(pid == 0) break;
18.        }
19. 
20. if(pid == 0)
21.        {
22. //while(1)
23.               {
24.                      printf("I am child %d.\n", getpid());
25.                      sleep(3);
26.               }
27.        }
28. 
29. else if(pid > 0)
30.        {
31. 
32.               pid_t pid_c;
33.               while(1){
34. 
35. //pid_c = wait(NULL);
36.                      printf("I am parent.\n");
37.                      pid_c = waitpid(0, NULL, WNOHANG);
38. 
39. if(pid_c == -1)     
40. continue;
41. else
42.                             printf("wait for child %d.\n", pid_c);
43. if(pid_c > 0){
44.                             n++;     
45.                      }
46. if(n == 2)
47.                             break;                  
48.                      sleep(1);
49.               }
50.        }
51. 
52. return 0;
53. }

一个父进程fork了三个子进程,通过ps – ajx查看

 

可以看到三个子进程的pid号依次递增,,父进程与三个子进程同属于一个进程组。(父进程创建子进程之后,子进程跟父进程默认是一个组)

如何kill掉一个进程组,命令【kill -9 -14943】

注释掉while(1),执行之后可以看到,通过WNOHANG确实将waitpid设置成了非阻塞的。

相关文章
|
8天前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
32 4
linux进程管理万字详解!!!
|
7天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
32 4
|
8天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
9天前
|
消息中间件 存储 Linux
|
13天前
|
运维 监控 Shell
深入理解Linux系统下的Shell脚本编程
【10月更文挑战第24天】本文将深入浅出地介绍Linux系统中Shell脚本的基础知识和实用技巧,帮助读者从零开始学习编写Shell脚本。通过本文的学习,你将能够掌握Shell脚本的基本语法、变量使用、流程控制以及函数定义等核心概念,并学会如何将这些知识应用于实际问题解决中。文章还将展示几个实用的Shell脚本例子,以加深对知识点的理解和应用。无论你是运维人员还是软件开发者,这篇文章都将为你提供强大的Linux自动化工具。
|
15天前
|
存储 安全 关系型数据库
Linux系统在服务器领域的应用与优势###
本文深入探讨了Linux操作系统在服务器领域的广泛应用及其显著优势。通过分析其开源性、安全性、稳定性和高效性,揭示了为何Linux成为众多企业和开发者的首选服务器操作系统。文章还列举了Linux在服务器管理、性能优化和社区支持等方面的具体优势,为读者提供了全面而深入的理解。 ###
|
16天前
|
运维 Linux
Linux查找占用的端口,并杀死进程的简单方法
通过上述步骤和命令,您能够迅速识别并根据实际情况管理Linux系统中占用特定端口的进程。为了获得更全面的服务器管理技巧和解决方案,提供了丰富的资源和专业服务,是您提升运维技能的理想选择。
16 1
|
27天前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
【10月更文挑战第9天】本文将深入浅出地介绍Linux系统中的进程管理机制,包括进程的概念、状态、调度以及如何在Linux环境下进行进程控制。我们将通过直观的语言和生动的比喻,让读者轻松掌握这一核心概念。文章不仅适合初学者构建基础,也能帮助有经验的用户加深对进程管理的理解。
19 1
|
23天前
|
消息中间件 存储 Linux
Linux手账—exec和fork
本文介绍了Linux系统中进程控制的核心功能——`fork`和`exec`系列函数。`fork`用于创建新进程(子进程),继承父进程的资源但拥有独立的地址空间;`exec`系列函数则在当前进程中执行新程序,替换原有地址空间。文章详细解析了这些函数的基本概念、用法及工作原理,强调了它们在多进程编程中的重要性。
27 0
|
4月前
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
下一篇
无影云桌面