MobileNetV2详细总结以及代码讲解

简介: MobileNetV2详细总结以及代码讲解

模型介绍


特点:1.相比于MobileNetV1,先进行了1x1的卷积进行升维,目的在于获得更多特征,然后用3x3的空间卷积,最后再用1x1降维。核心思想是升维再降维,参数量更少。


2.为了避免Relu对特征的破坏,在在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,再利用1x1卷积降维后,不再进行Relu6层,直接进行残差网络的加法。


PS:Relu对于负的输入,输出全为零;而本来特征就已经被“压缩”,再经过Relu的话,又要“损失”一部分特征,因此这里不采用Relu。

20.png

模型网络


t:1x1升维扩张的倍数。


c:输出通道数。


n:进行多少次。


s:步长。

21.png

如下图是bottleneck的结构,这里我们需要注意的是,步长维1和2的情况是不同的。stride=2时,不采用shortcut。因为维度变化,无法相加。

22.png

代码实现+图片预测


我们先将代码块分开说明。


首先,我们来看一下MoblieNet的更新点吧。

从上面我们知道:
1. (1,1)的pointwise卷积,提高通道数,结果Relu
2. (3,3)的depthwise卷积,提特征,结果Relu
3. (1,1)的pointwise卷积,单纯降维,不Relu
4.输入与输出的shortcut
所以在步长(2,2)的时候,要注意使用correct_pad填充特征图,
避免卷积出小数宽高特征图的情况。

这就是第一步啦,1x1扩张,relu6。

    if block_id:
        # Expand
        x = layers.Conv2D(expansion * in_channels,
                          kernel_size=1,
                          padding='same',
                          use_bias=False,
                          activation=None,
                          name=prefix + 'expand')(x)
        x = layers.BatchNormalization(axis=channel_axis,
                                      epsilon=1e-3,
                                      momentum=0.999,
                                      name=prefix + 'expand_BN')(x)
        x = layers.ReLU(6., name=prefix + 'expand_relu')(x)
    else:
        prefix = 'expanded_conv_'

在这里我们进行填充0的操作,为的是在3x3卷积后,长宽缩短到1/2,correct_pad是计算padding。

if stride == 2:
        x = ZeroPadding2D(padding=correct_pad(x, 3),
                          name=prefix + 'pad')(x)

然后就是可分离卷积了。

 # part2 可分离卷积
    x = DepthwiseConv2D(kernel_size=3,
                        strides=stride,
                        activation=None,
                        use_bias=False,
                        padding='same' if stride == 1 else 'valid',
                        name=prefix + 'depthwise')(x)
    x = BatchNormalization(epsilon=1e-3,
                           momentum=0.999,
                           name=prefix + 'depthwise_BN')(x)
    x = Activation(relu6, name=prefix + 'depthwise_relu')(x)

最后就是进行降维,这里不用relu。当stride=1以及输入输出通道数相同时,进行shortcut。

    # part3压缩特征,而且不使用relu函数,保证特征不被破坏
    x = Conv2D(pointwise_filters,
               kernel_size=1,
               padding='same',
               use_bias=False,
               activation=None,
               name=prefix + 'project')(x)
    x = BatchNormalization(epsilon=1e-3,
                           momentum=0.999,
                           name=prefix + 'project_BN')(x)
    if in_channels == pointwise_filters and stride == 1:
        return Add(name=prefix + 'add')([inputs, x])
    return x
下面是代码整合
#-------------------------------------------------------------#
#   MobileNetV2的网络部分
#-------------------------------------------------------------#
import math
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend
from keras import backend as K
from keras.preprocessing import image
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers import Conv2D, Add, ZeroPadding2D, GlobalAveragePooling2D, Dropout, Dense
from keras.layers import MaxPooling2D,Activation,DepthwiseConv2D,Input,GlobalMaxPooling2D
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.utils.data_utils import get_file
# TODO Change path to v1.1
BASE_WEIGHT_PATH = ('https://github.com/JonathanCMitchell/mobilenet_v2_keras/'
                    'releases/download/v1.1/')
# relu6!
def relu6(x):
    return K.relu(x, max_value=6)
# 用于计算padding的大小
def correct_pad(inputs, kernel_size):
    img_dim = 1
    input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
    if isinstance(kernel_size, int):
        kernel_size = (kernel_size, kernel_size)
    if input_size[0] is None:
        adjust = (1, 1)
    else:
        adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)
    correct = (kernel_size[0] // 2, kernel_size[1] // 2)
    return ((correct[0] - adjust[0], correct[0]),
            (correct[1] - adjust[1], correct[1]))
# 使其结果可以被8整除,因为使用到了膨胀系数α
def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v
def MobileNetV2(input_shape=[224,224,3],
                alpha=1.0,
                include_top=True,
                weights='imagenet',
                classes=1000):
    rows = input_shape[0]
    img_input = Input(shape=input_shape)
    # stem部分
    # 224,224,3 -> 112,112,32
    first_block_filters = _make_divisible(32 * alpha, 8)
    x = ZeroPadding2D(padding=correct_pad(img_input, 3),
                             name='Conv1_pad')(img_input)
    x = Conv2D(first_block_filters,
                      kernel_size=3,
                      strides=(2, 2),
                      padding='valid',
                      use_bias=False,
                      name='Conv1')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name='bn_Conv1')(x)
    x = Activation(relu6, name='Conv1_relu')(x)
    # 112,112,32 -> 112,112,16
    x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1,
                            expansion=1, block_id=0)
    # 112,112,16 -> 56,56,24
    x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2,
                            expansion=6, block_id=1)
    x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1,
                            expansion=6, block_id=2)
    # 56,56,24 -> 28,28,32
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2,
                            expansion=6, block_id=3)
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
                            expansion=6, block_id=4)
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
                            expansion=6, block_id=5)
    # 28,28,32 -> 14,14,64
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=2,
                            expansion=6, block_id=6)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=7)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=8)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=9)
    # 14,14,64 -> 14,14,96
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=10)
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=11)
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=12)
    # 14,14,96 -> 7,7,160
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=2,
                            expansion=6, block_id=13)
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
                            expansion=6, block_id=14)
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
                            expansion=6, block_id=15)
    # 7,7,160 -> 7,7,320
    x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1,
                            expansion=6, block_id=16)
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280
    # 7,7,320 -> 7,7,1280
    x = Conv2D(last_block_filters,
                      kernel_size=1,
                      use_bias=False,
                      name='Conv_1')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv_1_bn')(x)
    x = Activation(relu6, name='out_relu')(x)
    x = GlobalAveragePooling2D()(x)
    x = Dense(classes, activation='softmax',
                        use_bias=True, name='Logits')(x)
    inputs = img_input
    model = Model(inputs, x, name='mobilenetv2_%0.2f_%s' % (alpha, rows))
    # Load weights.
    if weights == 'imagenet':
        if include_top:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(
                model_name, weight_path, cache_subdir='models')
        else:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(
                model_name, weight_path, cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)
    return model
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id):
    in_channels = backend.int_shape(inputs)[-1]
    pointwise_conv_filters = int(filters * alpha)
    pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
    x = inputs
    prefix = 'block_{}_'.format(block_id)
    # part1 数据扩张
    if block_id:
        # Expand
        x = Conv2D(expansion * in_channels,
                          kernel_size=1,
                          padding='same',
                          use_bias=False,
                          activation=None,
                          name=prefix + 'expand')(x)
        x = BatchNormalization(epsilon=1e-3,
                                      momentum=0.999,
                                      name=prefix + 'expand_BN')(x)
        x = Activation(relu6, name=prefix + 'expand_relu')(x)
    else:
        prefix = 'expanded_conv_'
    if stride == 2:
        x = ZeroPadding2D(padding=correct_pad(x, 3),
                                 name=prefix + 'pad')(x)
    # part2 可分离卷积
    x = DepthwiseConv2D(kernel_size=3,
                               strides=stride,
                               activation=None,
                               use_bias=False,
                               padding='same' if stride == 1 else 'valid',
                               name=prefix + 'depthwise')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name=prefix + 'depthwise_BN')(x)
    x = Activation(relu6, name=prefix + 'depthwise_relu')(x)
    # part3压缩特征,而且不使用relu函数,保证特征不被破坏
    x = Conv2D(pointwise_filters,
                      kernel_size=1,
                      padding='same',
                      use_bias=False,
                      activation=None,
                      name=prefix + 'project')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name=prefix + 'project_BN')(x)
    if in_channels == pointwise_filters and stride == 1:
        return Add(name=prefix + 'add')([inputs, x])
    return x
def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x
if __name__ == '__main__':
    model = MobileNetV2(input_shape=(224, 224, 3))
    model.summary()
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)
    preds = model.predict(x)
    print(np.argmax(preds))
    print('Predicted:', decode_predictions(preds, 1))
目录
相关文章
|
机器学习/深度学习 PyTorch 算法框架/工具
mobileNetV1网络解析,以及实现(pytorch)
mobileNetV1网络解析,以及实现(pytorch)
937 0
mobileNetV1网络解析,以及实现(pytorch)
|
6月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
|
8月前
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】
在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是**将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
|
8月前
|
机器学习/深度学习 算法 文件存储
YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)
YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)
647 0
YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)
|
6月前
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。
|
8月前
|
算法框架/工具
使用MobileNetV3的PSPNet网络结构
使用MobileNetV3的PSPNet网络结构
48 1
|
8月前
|
算法 文件存储 计算机视觉
【YOLOv8改进】MobileNetV3替换Backbone (论文笔记+引入代码)
YOLO目标检测专栏探讨了MobileNetV3的创新改进,该模型通过硬件感知的NAS和NetAdapt算法优化,适用于手机CPU。引入的新架构包括反转残差结构和线性瓶颈层,提出高效分割解码器LR-ASPP,提升了移动设备上的分类、检测和分割任务性能。MobileNetV3-Large在ImageNet上准确率提升3.2%,延迟降低20%,COCO检测速度增快25%。MobileNetV3-Small则在保持相近延迟下,准确率提高6.6%。此外,还展示了MobileNetV3_InvertedResidual模块的代码实现。
|
机器学习/深度学习 编解码
MobileNetV1详细原理(含torch源码)
MobilenetV1(含torch源码)—— cifar10
397 0
MobileNetV1详细原理(含torch源码)
|
8月前
|
机器学习/深度学习 存储 编解码
YOLOv8改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
YOLOv8改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
224 2
|
8月前
|
机器学习/深度学习 固态存储 测试技术
YOLOv8改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
YOLOv8改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
447 1