UNet详细解读(二)pytorch从头开始搭建UNet

简介: UNet详细解读(二)pytorch从头开始搭建UNet

Unet代码


网络架构图

4.png

输入是572x572的,但是输出变成了388x388,这说明经过网络以后,输出的结果和原图不是完全对应的,这在计算loss和输出结果都可以得到体现.


蓝色箭头代表3x3的卷积操作,并且步长是1,不进行padding,因此,每个该操作以后,featuremap的大小会减2.


红色箭头代表2x2的最大池化操作.如果池化之前特征向量的大小是奇数,那么就会损失一些信息 。输入的大小最好满足一个条件,就是可以让每一层池化操作前的特征向量的大小是偶数,这样就不会损失一些信息,并且crop的时候不会产生误差.


绿色箭头代表2x2的反卷积操作.


灰色箭头表示复制和剪切操作.


输出的最后一层,使用了1x1的卷积层做了分类


前半部分也就是图中左边部分的作用是特征提取,后半部分也就是图中的右边部分是上采样,也叫 encoder-deconder结构


两个3X3卷积层


蓝色箭头代表3x3的卷积操作,并且步长是1,不进行padding,因此,每个该操作以后,featuremap的大小会减2.

class DoubleConvolution(nn.Module):
  def __init__(self, in_channels: int, out_channels: int):
      super().__init__()
    self.first = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
    self.act1 = nn.ReLU()
    self.second = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
    self.act2 = nn.ReLU()
  def forward(self, x: torch.Tensor):
    x = self.first(x)
        x = self.act1(x)
        x = self.second(x)
        return self.act2(x)

下采样


红色箭头代表2x2的最大池化操作。

class DownSample(nn.Module):
    def __init__(self):
        super().__init__()
        self.pool = nn.MaxPool2d(2)
    def forward(self,x:torch.Tensor):
        return self.pool(x)

上采样


绿色箭头代表2x2的反卷积操作.

class UpSample(nn.Module):
    def __init__(self,input_channals:int,output_channals:int):
        super().__init__()
        self.up = nn.ConvTranspose2d(input_channals,output_channals,kernel_size=2,stride=2)
    def forward(self,x:torch.Tensor):
        return self.up(x)

裁剪并连接特征图


在扩展路径中的每个步骤,来自收缩路径的对应特征图与当前特征图连接。


contracting_x:将特征图从收缩路径裁剪为当前特征图的大小

class CropAndConcat(nn.Module):
    def forward(self,x:torch.Tensor,contracting_x:torch.Tensor):
        contracting_x = torchvision.transforms.functional.center_crop(contracting_x,[x.shape[2],x.shape[3]])
        x = torch.cat([x,contracting_x],dim=1)
        return x

网络架构代码

class Unet(nn.Module):
    def __init__(self,input_channals:int,output_channals:int):
        super().__init__()
        self.down_conv = nn.ModuleList([DoubleConvolution(i,0) for i,o in [(input_channals,64),(64,128),(128,256),(256,512)]])
        self.down_sample = nn.ModuleList([DownSample() for _ in range(4)])
        self.middel_conv = DoubleConvolution(512,1024)
        self.up_sample = nn.ModuleList([UpSample(i,o) for i,o in [(1024,512),(512,256),(256,128),(128,64)]])
        self.up_conv = nn.ModuleList([DoubleConvolution(i,o) for i,o in [(1024,512),(512,256),(256,128),(128,64)]])
        self.concat = nn.ModuleList(CropAndConcat() for _ in range(4))
        self.final_conv = nn.Conv2d(64,output_channals,kernel_size=1)
    def forward(self,x:torch.Tensor):
        pass_through = []
        for i in range(len(self.down_conv)):
            x = self.down_conv[i](x)
            pass_through.append(x)
            x = self.down_sample[i](x)
        x = self.middel_conv(x)
        for i in range(len(self.up_conv)):
            x = self.up_sample[i](x)
            x = self.concat[i](x,pass_through.pop())
            x = self.up_conv[i](x)
        x = self.final_conv(x)
        return x
目录
相关文章
|
算法 PyTorch 算法框架/工具
UNet++详细解读(二)pytorch从头开始搭建UNet++
UNet++详细解读(二)pytorch从头开始搭建UNet++
996 0
|
11月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
995 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
|
5月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
426 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
4月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
6月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
403 9
|
8月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
364 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
263 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
|
9月前
|
机器学习/深度学习 PyTorch 编译器
深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0推出的`torch.compile`功能为深度学习模型带来了显著的性能优化能力。本文从实用角度出发,详细介绍了`torch.compile`的核心技巧与应用场景,涵盖模型复杂度评估、可编译组件分析、系统化调试策略及性能优化高级技巧等内容。通过解决图断裂、重编译频繁等问题,并结合分布式训练和NCCL通信优化,开发者可以有效提升日常开发效率与模型性能。文章为PyTorch用户提供了全面的指导,助力充分挖掘`torch.compile`的潜力。
1059 17

热门文章

最新文章

推荐镜像

更多