【MATLAB第43期】基于MATLAB的BO-NAR贝叶斯优化动态神经网络NAR时间序列股票预测模型

简介: 【MATLAB第43期】基于MATLAB的BO-NAR贝叶斯优化动态神经网络NAR时间序列股票预测模型

【MATLAB第43期】基于MATLAB的BO-NAR贝叶斯优化动态神经网络NAR时间序列股票预测模型


一、效果展示



二、模型介绍


1.数据情况


一列数据,499个值

ratio = 0.9;% 训练集比例
MaxEpochs = 600;% 最大训练次数 
% % 导入股票数据
xall= importdata('数据.xlsx');

2.优化参数


**贝叶斯优化7个超参数

学习率
训练目标函数
动量值
归一方式
滑动窗口值
隐含层1神经元数
隐含层2神经元数**

适应度函数: mae


3.贝叶斯结构参数


贝叶斯参数:

'MaxTime',10*60*60, ...%10*60*60  训练最大时间
'Verbose',1,...
'NumSeedPoints',info(1),...%初始评估点数
'MaxObjectiveEvaluations',100,...%迭代次数
'ExplorationRatio',0.7,...%搜索倾向概率


4.NAR参数:


 net.trainParam.epochs = MaxEpochs ; % 600
        net.trainParam.goal = 1e-6;   %训练目标值
         net.trainParam.max_fail = 30; % 最大失败次数
               net.divideParam.trainRatio = 0.7;训练集划分
        net.divideParam.valRatio = 0.15;:验证集划分
        net.divideParam.testRatio = 0.15;%测试集划分


三、代码展示


clear all
ratio = 0.9;% 训练集比例
MaxEpochs = 600;% 最大训练次数 
NetOption = 'NarNet';% NET网络
% % 导入股票数据
xall= importdata('数据.xlsx');
Date=datetime(xall.textdata)';
data= xall.data';
numStepsTraining = round(ratio*numel(data));
indexTrain = 1:numStepsTraining;
dataTrain = data(indexTrain );
dateTrain = Date(indexTrain);
indexTest = numStepsTraining+1:size(data,2);
dataTest = data(indexTest);
dateTest = Date(indexTest);
    optimVars = [
        optimizableVariable('learningrate',[1e-5 1e-2],'Type','real','Transform',"log")
        optimizableVariable('performFcn',{'mse' 'mae' 'sse' 'msesparse'},'Type','categorical')
        optimizableVariable('mc',[5e-1 0.99],'Type','real',"Transform","log")
        optimizableVariable('processFcns',{'mapminmax' 'mapstd'},'Type','categorical')
        optimizableVariable('Lag',[5 20],'Type','integer')
        optimizableVariable('hiddenLayerSize1',[7 25],'Type','integer')
        optimizableVariable('hiddenLayerSize2',[7 25],'Type','integer')];
    BayesObject = bayesopt(ObjFcnSN,optimVars, ...
        'MaxTime',10*60*60, ...%10*60*60  训练最大时间
        'Verbose',1,...
        'NumSeedPoints',info(1),...%初始评估点数
        'MaxObjectiveEvaluations',100,...%迭代次数
        'ExplorationRatio',0.7,...%搜索倾向概率
    % 得到最佳参数
    optVars = bestPoint(BayesObject),


四、代码获取


后台**私信回复“43期”**即可获取下载链接

相关文章
|
2天前
|
缓存 JSON 网络协议
Android面试题:App性能优化之电量优化和网络优化
这篇文章讨论了Android应用的电量和网络优化。电量优化涉及Doze和Standby模式,其中应用可能需要通过用户白名单或电池广播来适应限制。Battery Historian和Android Studio的Energy Profile是电量分析工具。建议减少不必要的操作,延迟非关键任务,合并网络请求。网络优化包括HTTPDNS减少DNS解析延迟,Keep-Alive复用连接,HTTP/2实现多路复用,以及使用protobuf和gzip压缩数据。其他策略如使用WebP图像格式,按网络质量提供不同分辨率的图片,以及启用HTTP缓存也是有效手段。
21 9
|
3天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
19 6
|
1天前
|
缓存 算法
基于机会网络编码(COPE)的卫星网络路由算法matlab仿真
**摘要:** 该程序实现了一个基于机会网络编码(COPE)的卫星网络路由算法,旨在提升无线网络的传输效率和吞吐量。在MATLAB2022a中测试,结果显示了不同数据流个数下的网络吞吐量。算法通过Dijkstra函数寻找路径,计算编码机会(Nab和Nx),并根据编码机会减少传输次数。当有编码机会时,中间节点执行编码和解码操作,优化传输路径。结果以图表形式展示,显示数据流与吞吐量的关系,并保存为`R0.mat`。COPE算法预测和利用编码机会,适应卫星网络的动态特性,提高数据传输的可靠性和效率。
|
1天前
|
机器学习/深度学习 算法 搜索推荐
神经网络中的优化方法
摘要: 这篇内容介绍了梯度下降优化算法在机器学习中的挑战,如平缓区域、鞍点和局部最小值,以及如何通过改进策略来克服这些问题。文章提到了几种优化方法,包括Momentum、AdaGrad、RMSprop和Adam。Momentum通过累积历史梯度信息来调整参数更新,帮助模型在训练过程中更快地收敛。AdaGrad和RMSprop解决了AdaGrad学习率过早衰减的问题,RMSprop结合了Momentum和AdaGrad的优势,通过一阶矩估计和二阶矩估计动态调整学习率,尤其适用于大规模数据集和复杂模型。Adam是RMSprop的一个变种,是深度学习中最常用的优化器之一。
|
2天前
|
传感器 算法
ANC主动降噪理论及Matlab代码实现
ANC主动降噪理论及Matlab代码实现
|
1月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
1月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
1月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
1月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章