块存储质量的铸就之路 — 测试左移在大型分布式系统中的工程实践

本文涉及的产品
函数计算FC,每月15万CU 3个月
应用实时监控服务-用户体验监控,每月100OCU免费额度
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
简介: 修复一个Bug的成本在不同阶段有着天壤之别,发现问题越早,修复代价便越低。本文将讲述阿里云块存储在真实业务场景中的测试左移实践。

为什么要测试左移?

       众所周知,软件工程原则:问题发现得越早,修复问题的代价越低。在《代码大全》书中,从软件工程实践角度说明一个Bug的成本在产品需求分析阶段、开发阶段、测试阶段、生产阶段有着天壤之别,在修复难度、引入新问题的可能性、沟通成本等方面计算,集成测试阶段修复一个Bug的成本是编码阶段的40倍。



      什么是测试左移?即测试向左扩展,让测试介入代码提测之前。比如,扩展到开发阶段,在架构设计时考虑产品的可测试性,进行开发自测。 测试左移是一个理念,代码门禁是测试左移的典型实践,即提交代码自动触发编译和测试,构建失败则阻塞代码提交。







图1 代码门禁

       代码门禁通过缩短测试反馈弧尽早发现缺陷,阿里云块存储团队代码门禁单日有效拦截百余次Case,拦截多个业务逻辑缺陷、百余次进程Crash、数据安全性缺陷、CPU/Mem资源使用缺陷等。如若没有代码门禁,将导致问题被掩盖,不断积累。



何时进行测试左移?

       在系统最初阶段建立严格的代码准入标准和CICD系统是否是最好的时机呢?从质量保证的单一维度考虑,答案是肯定的。但从业务整体效益来看并非全局最优。理性看待技术债,技术债像贷款,有好也有坏,可以超前消费变现贷款买房,但相应的,有利息,利滚利,开发难度越来越大。



       RethinkDB与MongoDB在竞争中失利。技术上,RethinkDB比MongoDB更追求完美,但是比MongoDB发布稳定版本晚了三年,错过了NoSQL的黄金时机,《RethinkDB:why we failed》。如下图所示,A B C三家公司关于技术债和业务先行的时间之间的平衡:

○A公司:只关注业务,不关注技术债;

○B公司:持续关注技术债,但对业务时机不敏感;

○C公司:持续关注业务和技术债。对业务机会很敏感,最初放手借贷,控制技术债并在合适的时候偿还。





图2 技术债 (来源:《质量与速度的均衡:让“唯快不破”快得更持久》葛俊)



       阿里云块存储在2018年初发布ESSD邀测,业界首个百万IOPS的云盘服务,性能上有50倍的飞跃,在真实业务场景中,PostgreSQL数据库的写入速度快了26倍。透支了大量的技术债抢先了市场之后,团队内部集中偿还技术债,进行质量建设,一年后ESSD达到规模铺量的质量标准并进行了商业化。



测试左移的原则和实践

提前透支大量技术债后,团队养成了“糙快猛”的研发习惯,对于改变习惯和测试左移将面临落地的挑战,需要从上至下调整预期,测试左移的前期必然带来项目交付周期的放缓,长远来看,整体效率更高。



测试左移原则不等同于测试原则,实践总结了三条测试左移的原则如下:





表1 测试左移原则

原则一:左移标准共识

建立左移标准并在团队内达成共识是测试左移最基础的原则,在代码门禁系统中要求代码覆盖率卡点、静态代码质量扫描,业务覆盖率要求是所有功能测试均需在代码门禁阶段添加相应的测试Case覆盖。

例如,块存储的云盘是一个分布式存储系统,通过建立了Cluster in Docker的一键秒级构建集群环境实现Function Test测试脚手架,使得全链路E2E测试在代码门禁阶段有了落地的土壤。新Feature评审时功能测试不接受手工测试报告,只接受Function Test List的Code Review,以避免手工测试无自动化沉淀,相同问题重复出现。



原则二:坚持快速反馈

早发现早治疗,越早治疗修复成本越低。对于架构设计、编码实现和测试不足遗漏到生产环境的缺陷,不断反问,该问题是否可以在更早的测试阶段拦截?

例如,分布式系统下的级联雪崩故障,RPC Timeout不合理 + 无限重试 + 无并发Queue Depth限流造成错误的循环持续运转,负反馈机制压崩了分布式集群。全链路的极限压测是必须的,同时对于单一功能测试验证也必须在代码门禁环节添加自动化Case,以自动化验证限流、重试和超时机制符合设计实现预期。



原则三:持续分解问题

持续分解问题是测试左移最核心的原则,把一个系统拆解为多个子系统,用抽象和分层的方法,让每个同学开发同时只面对有限的信息,并且能够有条理的深入到每一个子系统中查看细节。

例如,将复杂问题拆分成具体到每个模块松耦合的功能语义,各模块补充各自的契约测试覆盖。对于分布式系统Server热升级(热升级,即不影响服务的升级),需在升级前,中心管控节点Master将Server进程服务调度走,Server进程之间负责服务迁移(老进程Unload,新进程Load),Client需从Master/Server感知到服务已被调度走,需更换Location进行访问,拆解成Client/Master/Server的多个模块内Case覆盖。



在测试左移的实践过程中,总结了如下三个阶段:



阶段一:建立测试脚手架

简单可依赖的CICD的测试框架是基建保障。业界有很多开源的CI测试框架,例如Jenkins、GitlabCI、Travis-CI、Tekton等,阿里的Aone和蚂蚁的LinkIn等

对于IaaS的底层块存储分布式系统,单个单元测试即达到4 Core Cpu和6GB Mem的资源需求,单机无法满足近万个门禁Case测试的及时性。业界和公司内的系统无法满足分布式编译构建和分布式测试的需求,块存储基于Kubernetes+Jenkins自研实现了门禁系统。





图3 EBS CI门禁系统



       通过Kubernetes实现Case资源隔离,每个Case独占容器,容器运行过程中CPU/Mem资源设置Limit,避免Case之间打架(例如:某个Case内存泄漏导致内存不足,发生争抢,CGroup可能误杀了其他Case),Case运行环境用完即抛确保环境一致性,提交代码即自动触发测试(Test as a Service),确保有了土壤可以落地后,门禁系统负责测试运行,开发者负责Case编写和不稳定Case的问题解决。



阶段二:高频测试,快速测试

"If it hurts, do it more often",高频测试是治理不稳定Case的法宝,越低频复现的问题越难调查,尽量多的暴露不稳定的失败,降低问题调查的门槛。通过分布式并发运行、提高构建速度(增量编译/分布式编译)、分层测试提升测试运行速度。



       块存储门禁系统基于Kubernetes实现,即具备测试并发度横向扩展能力,白天CI系统进行代码门禁卡点和自助构建任务,夜间高频百轮回归门禁Case和E2E回归。高频测试大大增加了低概率时序Bug的暴露频次,在门禁系统中通过CPU资源超卖,相当于模拟CPU主频降频,多次发现低概率的数据安全性、进程Crash等缺陷问题。





图4 EBS 各级测试运行轮数



阶段三:不稳定Case治理

不稳定Case治理可能是门禁系统中挑战最大的部分,不稳定Case若不治理将导致破窗效应,测试左移则前功尽弃。块存储门禁系统是全量卡点,即任一Case失败则阻塞代码提交,随着Case的增加,对Case的稳定性要求与日俱增。门禁系统上万个Case中如若有3个Case通过率为90%,则整体通过率为72%,关于不稳定Case的治理Google和微软在2016年和2017年相继发表了论文,Google链接微软链接



块存储治理不稳定Case主要通过高频测试和文化布道,一周内不稳定的Case的每日运行轮数是稳定Case的权重5倍,未修复Case更高频的暴露复现,对于已修复的Case以验证修复效果。团队内从上至下达成一致共识:生产问题优先级 > 不稳定Case优先级 > 新Feature项目研发优先级。下图是块存储近半年不稳定Case Top15的回归失败轮数,分子是失败轮数,分母是单日运行轮数,失败比例越高颜色越深。





图5 EBS 门禁Top15不稳定Case通过率



       在测试左移的实践落地的过程中会遇到很多挑战,知行合一很难,整个团队遵守相同的标准规范落地更难。块存储系统有百万行代码,在近一年中生产代码行数增加约20%,测试代码行增加约100%,近万个门禁Case,持续治理不稳定Case,门禁通过率从4.7%提升至70%,后续计划通过精准测试进一步提升门禁通过率。

       仰望天空,并脚踏实地。在测试左移的编码实践方面推荐学习TDD(Test-Driven Development),在《软件测试》《Google :Building Secure & Reliable Systems》《重构》 《重构与模式》《敏捷软件开发》《程序员的职业素养》……国外泰斗级程序员大叔的书里,全部都推荐了TDD(测试驱动开发)。TDD不是万能药,主要思维模式是,先想清楚系统的行为表现,再下手编码,测试想清楚了,开发的API/系统表现就清晰了,API/函数/方法语义就明确了。如何衡量测试的好坏?好的测试是 What,包含 Given When Then;差的测试是 How,若每次方法/函数修改之后如果必须完全重写测试,或许需要重新考虑测试实现和系统本身的设计结构了。

相关实践学习
块存储快速入门
块存储是阿里云为云服务器ECS提供的块设备产品。通过体验挂载数据盘、分区格式化数据盘(Linux)、创建云盘快照、重新初始化数据盘、使用快照回滚云盘和卸载数据盘等功能,带您快速入门块存储。
相关文章
|
3天前
|
敏捷开发 人工智能 Devops
探索自动化测试的高效策略与实践###
当今软件开发生命周期中,自动化测试已成为提升效率、保障质量的关键工具。本文深入剖析了自动化测试的核心价值,探讨了一系列高效策略,包括选择合适的自动化框架、设计可维护的测试脚本、集成持续集成/持续部署(CI/CD)流程,以及有效管理和维护测试用例库。通过具体案例分析,揭示了这些策略在实际应用中的成效,为软件测试人员提供了宝贵的经验分享和实践指导。 ###
|
3天前
|
jenkins 测试技术 持续交付
软件测试中的自动化与持续集成:提升效率与质量的关键
在快节奏的软件开发环境中,自动化测试和持续集成已经成为不可或缺的部分。本文将探讨自动化测试和持续集成的重要性,以及它们如何协同工作以提高软件开发的效率和质量。通过分析自动化测试的策略、工具选择以及持续集成的实践,我们将揭示这些技术如何帮助开发团队快速响应变化,减少错误,并加速产品上市时间。
|
3天前
|
机器学习/深度学习 人工智能 jenkins
软件测试中的自动化与持续集成实践
在快速迭代的软件开发过程中,自动化测试和持续集成(CI)是确保代码质量和加速产品上市的关键。本文探讨了自动化测试的重要性、常见的自动化测试工具以及如何将自动化测试整合到持续集成流程中,以提高软件测试的效率和可靠性。通过案例分析,展示了自动化测试和持续集成在实际项目中的应用效果,并提供了实施建议。
|
3天前
|
Java 测试技术 持续交付
探索自动化测试在软件开发中的关键作用与实践
在现代软件开发流程中,自动化测试已成为提升产品质量、加速交付速度的不可或缺的一环。本文深入探讨了自动化测试的重要性,分析了其在不同阶段的应用价值,并结合实际案例阐述了如何有效实施自动化测试策略,以期为读者提供一套可操作的实践指南。
|
8天前
|
测试技术 开发者 Python
自动化测试之美:从零构建你的软件质量防线
【10月更文挑战第34天】在数字化时代的浪潮中,软件成为我们生活和工作不可或缺的一部分。然而,随着软件复杂性的增加,如何保证其质量和稳定性成为开发者面临的一大挑战。自动化测试,作为现代软件开发过程中的关键实践,不仅提高了测试效率,还确保了软件产品的质量。本文将深入浅出地介绍自动化测试的概念、重要性以及实施步骤,带领读者从零基础开始,一步步构建起属于自己的软件质量防线。通过具体实例,我们将探索如何有效地设计和执行自动化测试脚本,最终实现软件开发流程的优化和产品质量的提升。无论你是软件开发新手,还是希望提高项目质量的资深开发者,这篇文章都将为你提供宝贵的指导和启示。
|
3天前
|
Web App开发 敏捷开发 测试技术
探索自动化测试的奥秘:从理论到实践
【10月更文挑战第39天】在软件质量保障的战场上,自动化测试是提升效率和准确性的利器。本文将深入浅出地介绍自动化测试的基本概念、必要性以及如何实施自动化测试。我们将通过一个实际案例,展示如何利用流行的自动化测试工具Selenium进行网页测试,并分享一些实用的技巧和最佳实践。无论你是新手还是有经验的测试工程师,这篇文章都将为你提供宝贵的知识,帮助你在自动化测试的道路上更进一步。
|
3天前
|
敏捷开发 Java 测试技术
探索自动化测试:从理论到实践
【10月更文挑战第39天】在软件开发的海洋中,自动化测试是一艘能够带领团队高效航行的船只。本文将作为你的航海图,指引你理解自动化测试的核心概念,并分享一段实际的代码旅程,让你领略自动化测试的魅力和力量。准备好了吗?让我们启航!
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的新篇章:利用AI提升软件质量
【10月更文挑战第35天】在软件开发的海洋中,自动化测试犹如一艘救生艇,它帮助团队确保产品质量,同时减少人为错误。本文将探索如何通过集成人工智能(AI)技术,使自动化测试更加智能化,从而提升软件测试的效率和准确性。我们将从AI在测试用例生成、测试执行和结果分析中的应用出发,深入讨论AI如何重塑软件测试领域,并配以实际代码示例来说明这些概念。
34 3
|
8天前
|
测试技术 API Android开发
探索软件测试中的自动化框架选择与实践####
本文深入探讨了软件测试领域内,面对众多自动化测试框架时,如何依据项目特性和团队需求做出明智选择,并分享了实践中的有效策略与技巧。不同于传统摘要的概述方式,本文将直接以一段实践指南的形式,简述在选择自动化测试框架时应考虑的核心要素及推荐路径,旨在为读者提供即时可用的参考。 ####
|
1月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?