(附源码)基于sklearn的多种机器学习模型在降水降尺度中的应用(KNN\LR\RF\Ada\Xg\GBDT)1

简介: (附源码)基于sklearn的多种机器学习模型在降水降尺度中的应用(KNN\LR\RF\Ada\Xg\GBDT)1

最近学习了机器学习, 有一些感触,但是没有时间详细写。这里简单给一下我写的源码(并且我是在jupyter notebook上面做的报告,所以代码格式也是jupyter notebook的,如果你需要移动到pycharm上做修改,需要做一点点微调,这很简单。因为时间,我直接将我在jupyter notebook做报告的代码直接搬过来)。


1. 准备工作

1.1 包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt  # 数据可视化
import seaborn as sns  # 数据可视化
from sklearn.model_selection import train_test_split  # 数据集划分
from sklearn.preprocessing import StandardScaler, RobustScaler  # 特征值标准化
from sklearn.ensemble import RandomForestRegressor  # 随机森林回归模型
from sklearn.metrics import accuracy_score, mean_squared_error, mean_squared_log_error  # 模型评估

1.2  读取数据

data = pd.read_csv('D:/pycharm_storage/机器学习/项目/绘sir/NTL2012.csv')

1.3 了解数据

1.3.1 了解数据shape

data_shape = data.shape
data.shape

输出结果



说明一共有18003列14行数据

1.3.2 数据的前五行和尾五行

data.head()

输出结果:


data.tail()

输出结果:



1.3.3 检查每一列的唯一值

如果你已经知道你的每一列特征项数据是何种类型(回归\连续的还是离散的),那么你无需进行这一步代码操作。由于我的数据是他人处理的,所以我需要知道数据的基本情况(包括上面的观察数据据)。

dict = {}
for i in list(data.columns):
    dict[i] = data[i].value_counts().shape[0]
pd.DataFrame(dict, index=['唯一值'])

输出结果:


以上数值均为连续值,没有离散值,选用的模型均采用回归算法

1.3.4 统计数据

这里也只是了解数据的诸如平均值,中位数,最大最小值等等基本情况

data.describe()

输出结果:



这里是查看数据的底层情况了。

data.info()

输出结果:



1.3.5 缺失值统计

将0.0值转化为np.nan(即NaN),方便计数

data.replace(0, value=np.nan, inplace=True)  # 
data.isnull().sum()

输出结果:



上面显示的是每一列特征项中0.0(已经修改成了NaN)出现个数,由于除Y、Lat、Lon外的其它特征项出现0.0值是正常现象,所以这里不对0.0值做处理。

所以将NaN转化为0.0值方便后续运算操作。

data.replace(np.nan, value=0.0, inplace=True)
data.isnull().sum()

输出结果:



没有缺失值,不需要做缺失值异常处理


2. 数据可视化与分析(做的一般)

2.1 各个维度比较(pairplot)

sns.pairplot(data, hue='Y')

输出结果:



2.2 各维度与Y的比较

plt.figure(figsize=(72, 25), dpi=180, facecolor='#ffe6e6')  # 
data_cols = list(data.columns)
data_cols.remove('Y')
for i in range(13):
    plt.subplot(13, 2, i + 1)
    sns.violinplot(x='Y', y=data_cols[i], data=data, facecolor='#ffe6e6',palette='Set2')

输出结果:



2.3 相关系数矩阵

corrmat = data.corr()
corrmat

输出结果:



系数矩阵——图

f, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, vmax=.8, square=True, cmap='Greens')

输出结果:




目录
相关文章
|
17天前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
110 8
|
4月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
1月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
1月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。
|
1月前
|
机器学习/深度学习 存储 分布式计算
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证(211)
本文探讨了Java大数据与机器学习模型在金融风险压力测试中的创新应用。通过多源数据采集、模型构建与优化,结合随机森林、LSTM等算法,实现信用风险动态评估、市场极端场景模拟与操作风险预警。案例分析展示了花旗银行与蚂蚁集团的智能风控实践,验证了技术在提升风险识别效率与降低金融风险损失方面的显著成效。
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
4月前
|
机器学习/深度学习 数据采集 人工智能
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
随着Web技术发展,动态加载数据的网站(如今日头条)对传统爬虫提出新挑战:初始HTML无完整数据、请求路径动态生成且易触发反爬策略。本文以爬取“AI”相关新闻为例,探讨了通过浏览器自动化、抓包分析和静态逆向接口等方法采集数据的局限性,并提出借助机器学习智能识别AJAX触发点的解决方案。通过特征提取与模型训练,爬虫可自动推测数据接口路径并高效采集。代码实现展示了如何模拟AJAX请求获取新闻标题、简介、作者和时间,并分类存储。未来,智能化将成为采集技术的发展趋势。
108 1
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
|
5月前
|
机器学习/深度学习 算法 数据挖掘
PyTabKit:比sklearn更强大的表格数据机器学习框架
PyTabKit是一个专为表格数据设计的新兴机器学习框架,集成了RealMLP等先进深度学习技术与优化的GBDT超参数配置。相比传统Scikit-Learn,PyTabKit通过元级调优的默认参数设置,在无需复杂超参调整的情况下,显著提升中大型数据集的性能表现。其简化API设计、高效训练速度和多模型集成能力,使其成为企业决策与竞赛建模的理想工具。
174 12
PyTabKit:比sklearn更强大的表格数据机器学习框架

热门文章

最新文章