为什么大模型训练需要GPU,以及适合训练大模型的GPU介绍

简介: 为什么大模型训练需要GPU,以及适合训练大模型的GPU介绍

前言

今天偶然看到一篇关于介绍GPU的推文,我们在复现代码以及模型训练过程中,GPU的使用是必不可少的,那么大模型训练需要的是GPU,而不是CPU呢。现在市面上又有哪些适合训练的GPU型号呢,价格如何,本文将会将上述疑问的回答一一分享给大家。


1、为什么大模型训练需要GPU,而非CPU

总的来说,选择GPU而非CPU进行大模型训练的主要原因是因为GPU在并行处理能力、高吞吐量和针对机器学习任务的优化方面的优势。这使得GPU成为训练复杂和大规模机器学习模型的首选。

并行处理能力:GPU拥有成千上万个较小、更专用的核心,这使得它们能够同时处理多个任务。这种并行处理能力使GPU非常适合执行机器学习和深度学习算法中的大量矩阵和向量运算。相比之下,CPU(中央处理单元)核心数量较少,但每个核心的通用计算能力更强,适用于需要大量逻辑和顺序处理的任务。

高吞吐量:GPU能够提供更高的吞吐量,这意味着它们可以在较短的时间内处理更多的数据。这对于训练大型模型尤其重要,因为这些模型通常需要处理巨大的数据集,并执行数以亿计的运算。

大规模计算:GPU最初是为了处理复杂的图形和图像处理任务而设计的,这些任务需要大量的计算和数据处理。这些设计特性也让GPU非常适合于训练大型机器学习模型,因为这些模型需要进行大量的数学运算,特别是在训练神经网络时。

优化的库和框架:许多深度学习框架和库,如TensorFlow、PyTorch等,都针对GPU进行了优化,以充分利用其并行处理能力。这些优化包括专门的算法和硬件加速技术,可以显著加快模型训练过程。

成本:虽然高端GPU的初始投资可能比CPU高,但在处理大规模机器学习任务时,GPU因其较高的效率和速度,可以提供更好的成本效益。尤其是在云计算环境中,用户可以根据需要临时租用GPU资源,进一步提高成本效益。

2、现在都有哪些合适的GPU适合训练,价格如何

现在GPU可谓是各大厂商都在疯抢,并不是你有钱就可以买的到的,并且现在大规模训练主要还是英伟达(NVIDIA)系列为主,受中美关系影响,更难搞到好的GP。下面介绍几款常用的GPU:

A100:非常适合大规模并行计算任务和大模型训练,现在用的最多的卡之一,性价比高,1.5w美元左右,但是溢价严重,人民币价格区间10w~20w,运气好的话10w左右可以拿下。(价格仅供参考,购买时因素很多,只能提供通用的价格区间,后面GPU价格时也是一样,只提供价格区间)。

H100:A100的下一代产品,提供了更高的性能和更快的NVLink通信速度,特别针对人工智能、机器学习和深度学习进行了优化。价格是A100的2倍左右,售价是2.5w~3w美元之间,但是溢价严重,3.5w美元都不一定能拿下来,所以参考价格区间,25w~35w人民币。

A100和H100,因为政治因素。去年受到了限制,为此NVIDIA推出了替代型号专供中国市场,A100的替代型号是A800,在已有A100的基础上将NVLink高速互连总线的带宽从600GB/s降低到400GB/s,其他完全不变。H100的替代型号是H800,应该是跟A800一样降低了带宽。

A800:具体价格不明,但应该和A100差不多,预计10w~20w之间。

H800:具体价格不明,但是应该25w起,估计在35w~45w之间。

V100:性能肯定不如上面提到的那四个(A100、H100、A800、H800),但是如果资金有限,V100也是一个不错的选择,32G版价格一般5w~8w。

整体对比如下图所示,性能上H100(或H800)> A100(或A800)> V100。

4090:最后再来说一下4090显卡,4090显卡训练大模型不行,因为大模型训练需要高性能的通信,但4090的通信效率太低,但是进行推理可以。价格一般在2w左右。

参考: 极客e家

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
1月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
93 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
5天前
|
人工智能 Linux iOS开发
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。
219 100
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
2天前
|
存储 人工智能 算法
Magic 1-For-1:北大联合英伟达推出的高质量视频生成量化模型,支持在消费级GPU上快速生成
北京大学、Hedra Inc. 和 Nvidia 联合推出的 Magic 1-For-1 模型,优化内存消耗和推理延迟,快速生成高质量视频片段。
73 3
Magic 1-For-1:北大联合英伟达推出的高质量视频生成量化模型,支持在消费级GPU上快速生成
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
260 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
62 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
93 20
|
30天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
81 6
|
1月前
|
存储 文件存储 对象存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。

热门文章

最新文章