数学建模评价模型-TOPSIS法(优劣解距离法)

简介: 评价模型-TOPSIS法(优劣解距离法)

评价模型-TOPSIS法(优劣解距离法)

1.1 概念

TOPSIS 法是一种常用的组内综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。基本过程为基于归一化后的原始数据矩阵,采用余弦法找出有限方案中的最优方案和最劣方案,然后分别计算各评价对象与最优方案和最劣方案间的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。该方法对数据分布及样本含量没有严格限制,数据计算简单易行

1.2 适用范围

评价对象得分,且各个指标值已知。(下图案例)
在这里插入图片描述

评价个体与评价指标之间的关系

知识点概括

在这里插入图片描述

TOPSIS法建模步骤

**1. 将原始数据矩阵正向化。也就是将那些极小型指标,中间型指标,区间型指标对应的数据全部化成极大型指标,方便统一计算和处理。

  1. 将正向化后的矩阵标准化。也就是通过标准化消除量纲的影响。
  2. 计算每个方案各自与最优解和最劣解的距离
  3. 根据最优解与最劣解计算得分并排序**
    在这里插入图片描述

原始矩阵正向化

在这里插入图片描述

极小型 to 极大型

在这里插入图片描述

中间型 to 极大型

在这里插入图片描述

区间型 to 极大型

在这里插入图片描述

正向化矩阵标准化

在这里插入图片描述

%% 对正向化后的矩阵进行标准化
%X为正向化矩阵 标准化矩阵Z
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)

计算各评价指标与最优及最劣向量之间的差距

在这里插入图片描述

评价对象与最优方案的接近程度

在这里插入图片描述

%% 计算与最大值的距离和最小值的距离,并算出得分  标准化矩阵Z
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ],2) .^ 0.5;   % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ],2) .^ 0.5;   % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N);    % 未归一化的得分 
disp('最后的得分为:')
stand_S = S / sum(S)    %归一化得分
[sorted_S,index] = sort(stand_S ,'descend')
sort排序函数
% Matlab中给一维向量排序是使用sort函数:sort(A),排序是按升序进行的,其中A为待排序的向量;
% 若欲保留排列前的索引,则可用 [sA,index] = sort(A,'descend')
% 排序后,sA是排序好的向量,index是向量sA中对A的索引。
%   sA  =  8     3     2     1
% index =  4     3     1     2

Topsis与层次评价法AHP

1. Topsis法避免了数据的主观性,不需要目标函数,不用通过检验,而且能够很好的刻画多个影响指标的综合影响力度,并且对于数据分布及样本量、指标多少无严格限制,既适于小样本资料,也适于多评价单元、多指标的大系统,较为灵活、方便。但是该算法需要每个指标的数据,而对应的量化指标选取会有一定难度,同时不确定指标的选取个数为多少适宜,才能够去很好刻画指标的影响力度.
2. 层次分析法的判断矩阵是通过“专家”评分获取的,主观性强,且n不宜过大。
优劣解距离法的指标评分则是现成的,且对较大的m与n同样适用。相较于层次分析法两两比较而言,优劣解距离法不易于发生混淆。

案例

题目:评价下表中20条河流的水质情况
注:含氧量越高越好;PH值越接近7越好;细菌总数越少越好;植物性营养物量介于10‐20之间最佳,超
过20或低于10均不好。
在这里插入图片描述

clear;clc
%%  第一步:导入数据data
load data_water_quality.mat

%%  第二步:判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、4三列需要处理,那么你需要输入[2,3,4]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第4列是中间型,就输入[1,3,2]:  '); 
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
    % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    % 第一个参数是要正向化处理的那一列向量 X(:,Position(i))   回顾上一讲的知识,X(:,n)表示取第n列的全部元素
    % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
    % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
    % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end

%% 第三步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)

%% 第四步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ],2) .^ 0.5;   % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ],2) .^ 0.5;   % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N);    % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')


%归一化结果分数  从大到小
sorted_S =
    0.0819
    0.0713
    0.0633
    0.0592
    0.0585
    0.0551
    0.0531
    0.0519
    0.0505
    0.0498
    0.0480
    0.0480
    0.0469
    0.0461
    0.0440
    0.0428
    0.0373
    0.0323
    0.0301
    0.0299

index =
    16
     3
     1
     5
    15
     7
    14
    20
    13
     9
     4
    10
    18
    11
     8
     6
    12
    19
     2
    17
目录
相关文章
|
6月前
|
资源调度
回归方程优良性评价(原理+实践+代码)
回归方程优良性评价(原理+实践+代码)
回归方程优良性评价(原理+实践+代码)
典型偏差和非典型偏差练习
典型偏差和非典型偏差练习
90 5
|
6月前
|
机器学习/深度学习 算法 数据可视化
Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化
Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化
|
6月前
|
算法 vr&ar Windows
R语言广义矩量法GMM和广义经验似然GEL估计ARMA、CAPM模型分析股票收益时间序列
R语言广义矩量法GMM和广义经验似然GEL估计ARMA、CAPM模型分析股票收益时间序列
|
6月前
R语言逐步多元回归模型分析长鼻鱼密度影响因素
R语言逐步多元回归模型分析长鼻鱼密度影响因素
|
算法
基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)
基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)
108 0
|
项目管理
典型偏差和非典型偏差
典型偏差和非典型偏差。
230 2
|
算法
评价模型:TOPSIS法(理想解法)
评价模型:TOPSIS法(理想解法)
623 0
评价模型:TOPSIS法(理想解法)
|
移动开发 编解码
数学建模常用模型05 :模糊综合评价法
数学建模常用模型05 :模糊综合评价法
28491 3
|
机器学习/深度学习 算法
学习笔记: 机器学习经典算法-空间内一点到超平面的距离推广公式
机器学习经典算法-个人笔记和学习心得分享
151 0