基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

简介: 基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

💥1 概述

自然激励技术(频率法和时间法)与特征系统实现算法和模态凝聚算法。用于识别受高斯白噪声激励影响的2DOF系统,并增加激励和响应的不确定性(也是高斯白噪声)。

具有模式凝聚的1时域NExT-ERA

----------------------------------------------------------------------

[结果] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)


输入:


data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据

引用的总长度: 参考通道的维科 .its 维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别采用每个参考通道)maxlags: 互相关函数

fs 中的滞后数: 采样频率

ncols: 汉克尔矩阵中的列数(大于 2/3*(maxlags+1) )


nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割:模式顺序的初始截止值 maxcut:模式顺序


偏移的最大截止值:最后一行和列块中的移位值(增加 EMAC 灵敏度)通常 =10

EMAC_option:如果此值等于 1,则 EMAC 将与列数无关(仅根据可观测性矩阵计算,而不是从可控性计算)


LimCMI:模式的最小允许CMI LimMAC & LimFreq:MAC的最小值和频率差的最大值,假设两种模式

指的是相同的实模

Plot_option:如果1绘制稳定图


输出:


结果:由以下组件

组成的结构 参数: NaFreq : 固有频率矢量

阻尼比:阻尼比矢量

模态形状:振型矩阵

指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性


MPC:模态相位共线性

CMI:一致模式指示器


具有模式凝聚的2频域NExT-ERA

----------------------------------------------------------------------

[结果] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)


输入:


data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据

refch 的总长度: 参考通道的总长度 .其维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别获取每个参考通道)

window: 窗口大小以获得光谱密度

N: 窗口数 p: 窗口

之间的重叠比率。从 0 到 1

fs: 采样频率

ncols: 汉克尔矩阵中的列数(大于 2/3*(ceil(窗口/2+1)-1))nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割: 模式阶数的初始截止值 maxcut: 模式阶


移位的最大截止值: 最后一行和列块中的移位值(增加 EMAC 灵敏度)


通常 =10

EMAC_option:如果此值等于 1,则 EMAC 将独立于列数(仅根据可观测性矩阵计算,而不是从可控性计算)LimCMI:

模式的最小允许 CMI LimMAC 和 LimFreq:MAC 的最小值和频率差的最大值,假设两种模式

指的是相同的实Plot_option模式

: 如果 1 绘制稳定图


输出:


结果:由以下组件

组成的结构 参数: NaFreq : 固有频率矢量

阻尼比:阻尼比矢量

模态形状:振型矩阵

指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性


MPC:模态相位共线性

CMI:一致模式指示器


📚2 运行结果

🌈3 Matlab代码实现

部分代码:

clc; clear; close all;
%Model Parameters and excitation
%--------------------------------------------------------------------------
M=[1 0; 0 1];
K=[2 -1; -1 1]*5;
C=0.0001*M+0.0001*K;
f=2*randn(2,10000);
fs=100;
%Apply modal superposition to get response
%--------------------------------------------------------------------------
n=size(f,1);
dt=1/fs; %sampling rate
[Vectors, Values]=eig(K,M);
Freq=sqrt(diag(Values))/(2*pi); % undamped natural frequency
steps=size(f,2);
Mn=diag(Vectors'*M*Vectors); % uncoupled mass
Cn=diag(Vectors'*C*Vectors); % uncoupled damping
Kn=diag(Vectors'*K*Vectors); % uncoupled stifness
wn=sqrt(diag(Values));
zeta=Cn./(sqrt(2.*Mn.*Kn));  % damping ratio
wd=wn.*sqrt(1-zeta.^2);
fn=Vectors'*f; % generalized input force matrix
t=[0:dt:dt*steps-dt];
for i=1:1:n
    h(i,:)=(1/(Mn(i)*wd(i))).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t); %transfer function of displacement
    hd(i,:)=(1/(Mn(i)*wd(i))).*(-zeta(i).*wn(i).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)+wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)); %transfer function of velocity
    hdd(i,:)=(1/(Mn(i)*wd(i))).*((zeta(i).*wn(i))^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)-zeta(i).*wn(i).*wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)-wd(i).*((zeta(i).*wn(i)).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t))-wd(i)^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)); %transfer function of acceleration
    qq=conv(fn(i,:),h(i,:))*dt;
    qqd=conv(fn(i,:),hd(i,:))*dt;
    qqdd=conv(fn(i,:),hdd(i,:))*dt;
    q(i,:)=qq(1:steps); % modal displacement
    qd(i,:)=qqd(1:steps); % modal velocity
    qdd(i,:)=qqdd(1:steps); % modal acceleration
end
x=Vectors*q; %displacement
v=Vectors*qd; %vecloity
a=Vectors*qdd; %vecloity
%Add noise to excitation and response
%--------------------------------------------------------------------------
f2=f+0.1*randn(2,10000);
a2=a+0.1*randn(2,10000);
v2=v+0.1*randn(2,10000);
x2=x+0.1*randn(2,10000);
%Plot displacement of first floor without and with noise
%--------------------------------------------------------------------------
figure;
subplot(3,2,1)
plot(t,f(1,:)); xlabel('Time (sec)');  ylabel('Force1'); title('First Floor');
subplot(3,2,2)
plot(t,f(2,:)); xlabel('Time (sec)');  ylabel('Force2'); title('Second Floor');
subplot(3,2,3)
plot(t,x(1,:)); xlabel('Time (sec)');  ylabel('DSP1');
subplot(3,2,4)
plot(t,x(2,:)); xlabel('Time (sec)');  ylabel('DSP2');
subplot(3,2,5)
plot(t,x2(1,:)); xlabel('Time (sec)');  ylabel('DSP1+Noise');
subplot(3,2,6)
plot(t,x2(2,:)); xlabel('Time (sec)');  ylabel('DSP2+Noise');
%Identify modal parameters using displacement with added uncertainty
%--------------------------------------------------------------------------
data=x2;
refch=2;
maxlags=999;
window=2000;
N=5;
p=0;
ncols=800;    
nrows=200;   
initialcut=2;
maxcut=20; 
shift=10;      
EMAC_option=1;
LimCMI=75;
LimMAC=50;
LimFreq=0.5;
Plot_option=1;
figure;
[Result1] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
figure;
[Result2] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
%Plot real and identified first modes to compare between them
%--------------------------------------------------------------------------
figure;
plot([0 ; -Vectors(:,1)],[0 1 2],'r*-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,1)],[0 1 2],'go-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,1)],[0 1 2],'y^--');
hold on
plot([0 ; -Vectors(:,2)],[0 1 2],'b^-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,2)],[0 1 2],'mv-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,2)],[0 1 2],'co--');
hold off
title('Real and Identified Mode Shapes');
legend('Mode 1 (Real)','Mode 1 (Identified using NExTF-ERA(Condensed))','Mode 1 (Identified using NExTT-ERA(Condensed))'...
      ,'Mode 2 (Real)','Mode 2 (Identified using NExTF-ERA(Condensed))','Mode 2 (Identified using NExTT-ERA(Condensed))');
xlabel('Amplitude');
ylabel('Floor');
grid on;
daspect([1 1 1]);
%Display real and Identified natural frequencies and damping ratios
%--------------------------------------------------------------------------
disp('Real and Identified Natural Drequencies and Damping Ratios of the First Mode'); 
disp(strcat('Real: Frequency=',num2str(Freq(1)),'Hz',' Damping Ratio=',num2str(zeta(1)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(1)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(1)),'%'));
disp('-----------')
disp('Real and Identified Natural Drequencies and Damping Ratios of the Second Mode');
disp(strcat('Real: Frequency=',num2str(Freq(2)),'Hz',' Damping Ratio=',num2str(zeta(2)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(2)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(2)),'%'));


🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] R. Pappa, K. Elliott, and A. Schenk, “A consistent-mode indicator for the eigensystem realization algorithm,” Journal of Guidance Control and Dynamics (1993), 1993.


[2] R. S. Pappa, G. H. James, and D. C. Zimmerman, “Autonomous modal identification of the space shuttle tail rudder,” Journal of Spacecraft and Rockets, vol. 35, no. 2, pp. 163–169, 1998.


[3] James, G. H., Thomas G. Carne, and James P. Lauffer. "The natural excitation technique (NExT) for modal parameter extraction from operating structures." Modal Analysis-the International Journal of Analytical and Experimental Modal Analysis 10.4 (1995): 260.


[4] Al Rumaithi, Ayad, "Characterization of Dynamic Structures Using Parametric and Non-parametric System Identification Methods" (2014). Electronic Theses and Dissertations. 1325.


[5] Al-Rumaithi, Ayad, Hae-Bum Yun, and Sami F. Masri. "A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes." Model Validation and Uncertainty Quantification, Volume 3. Springer, Cham, 2015. 113-133.

相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
|
1天前
|
算法 TensorFlow 算法框架/工具
基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到"result.txt"以供MATLAB显示图像分割效果。
|
1天前
|
算法 搜索推荐 数据挖掘
MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集
MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集
|
2天前
|
数据采集 机器学习/深度学习 存储
MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩
MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩
|
3天前
|
算法 数据安全/隐私保护 数据格式
基于混沌序列的图像加解密算法matlab仿真,并输出加解密之后的直方图
该内容是一个关于混沌系统理论及其在图像加解密算法中的应用摘要。介绍了使用matlab2022a运行的算法,重点阐述了混沌系统的特性,如确定性、非线性、初值敏感性等,并以Logistic映射为例展示混沌序列生成。图像加解密流程包括预处理、混沌序列生成、数据混淆和扩散,以及密钥管理。提供了部分核心程序,涉及混沌序列用于图像像素的混淆和扩散过程,通过位操作实现加密。
|
3天前
|
数据采集 算法 数据可视化
MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究
MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究
10 1
|
11天前
|
机器学习/深度学习 算法
m基于深度学习的QPSK调制解调系统频偏估计和补偿算法matlab仿真
MATLAB 2022a中展示了基于深度学习的QPSK调制解调系统频偏估计和补偿算法仿真结果。该算法运用神经网络模型实时估计并补偿无线通信中的频率偏移。QPSK调制将二进制信息映射到四个相位状态,解调通常采用相干解调。深度学习算法通过预处理、网络结构设计、损失函数选择和优化算法实现频偏估计。核心程序生成不同SNR下的信号,比较了有无频偏补偿的误码率,显示了补偿效果。
9 1
|
11天前
|
算法
代码随想录算法训练营第六十天 | LeetCode 84. 柱状图中最大的矩形
代码随想录算法训练营第六十天 | LeetCode 84. 柱状图中最大的矩形
18 3
|
2月前
|
机器学习/深度学习 算法
m基于深度学习的64QAM调制解调系统频偏估计和补偿算法matlab仿真
### 算法仿真结果 展示5张图像,描绘了基于深度学习的频偏估计和补偿在MATLAB 2022a中的仿真效果。 ### 理论概要 - 深度学习算法用于建立信号与频偏的非线性映射,无需导频,节省资源。 - 网络模型(如CNN或RNN)处理IQ数据,提取特征,简化估计补偿过程,降低复杂度。 - 64QAM系统中,通过神经网络实现精确频偏感知,增强通信性能。 ### MATLAB核心程序 - 代码生成64QAM信号,模拟不同SNR和频偏条件,使用深度学习进行相位估计和补偿。 - 仿真比较了有无补偿的误码率,显示补偿能显著改善通信质量。 ```
31 1
|
2月前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。

热门文章

最新文章