基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

简介: 基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

💥1 概述

自然激励技术(频率法和时间法)与特征系统实现算法和模态凝聚算法。用于识别受高斯白噪声激励影响的2DOF系统,并增加激励和响应的不确定性(也是高斯白噪声)。

具有模式凝聚的1时域NExT-ERA

----------------------------------------------------------------------

[结果] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)


输入:


data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据

引用的总长度: 参考通道的维科 .its 维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别采用每个参考通道)maxlags: 互相关函数

fs 中的滞后数: 采样频率

ncols: 汉克尔矩阵中的列数(大于 2/3*(maxlags+1) )


nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割:模式顺序的初始截止值 maxcut:模式顺序


偏移的最大截止值:最后一行和列块中的移位值(增加 EMAC 灵敏度)通常 =10

EMAC_option:如果此值等于 1,则 EMAC 将与列数无关(仅根据可观测性矩阵计算,而不是从可控性计算)


LimCMI:模式的最小允许CMI LimMAC & LimFreq:MAC的最小值和频率差的最大值,假设两种模式

指的是相同的实模

Plot_option:如果1绘制稳定图


输出:


结果:由以下组件

组成的结构 参数: NaFreq : 固有频率矢量

阻尼比:阻尼比矢量

模态形状:振型矩阵

指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性


MPC:模态相位共线性

CMI:一致模式指示器


具有模式凝聚的2频域NExT-ERA

----------------------------------------------------------------------

[结果] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)


输入:


data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据

refch 的总长度: 参考通道的总长度 .其维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别获取每个参考通道)

window: 窗口大小以获得光谱密度

N: 窗口数 p: 窗口

之间的重叠比率。从 0 到 1

fs: 采样频率

ncols: 汉克尔矩阵中的列数(大于 2/3*(ceil(窗口/2+1)-1))nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割: 模式阶数的初始截止值 maxcut: 模式阶


移位的最大截止值: 最后一行和列块中的移位值(增加 EMAC 灵敏度)


通常 =10

EMAC_option:如果此值等于 1,则 EMAC 将独立于列数(仅根据可观测性矩阵计算,而不是从可控性计算)LimCMI:

模式的最小允许 CMI LimMAC 和 LimFreq:MAC 的最小值和频率差的最大值,假设两种模式

指的是相同的实Plot_option模式

: 如果 1 绘制稳定图


输出:


结果:由以下组件

组成的结构 参数: NaFreq : 固有频率矢量

阻尼比:阻尼比矢量

模态形状:振型矩阵

指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性


MPC:模态相位共线性

CMI:一致模式指示器


📚2 运行结果

🌈3 Matlab代码实现

部分代码:

clc; clear; close all;
%Model Parameters and excitation
%--------------------------------------------------------------------------
M=[1 0; 0 1];
K=[2 -1; -1 1]*5;
C=0.0001*M+0.0001*K;
f=2*randn(2,10000);
fs=100;
%Apply modal superposition to get response
%--------------------------------------------------------------------------
n=size(f,1);
dt=1/fs; %sampling rate
[Vectors, Values]=eig(K,M);
Freq=sqrt(diag(Values))/(2*pi); % undamped natural frequency
steps=size(f,2);
Mn=diag(Vectors'*M*Vectors); % uncoupled mass
Cn=diag(Vectors'*C*Vectors); % uncoupled damping
Kn=diag(Vectors'*K*Vectors); % uncoupled stifness
wn=sqrt(diag(Values));
zeta=Cn./(sqrt(2.*Mn.*Kn));  % damping ratio
wd=wn.*sqrt(1-zeta.^2);
fn=Vectors'*f; % generalized input force matrix
t=[0:dt:dt*steps-dt];
for i=1:1:n
    h(i,:)=(1/(Mn(i)*wd(i))).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t); %transfer function of displacement
    hd(i,:)=(1/(Mn(i)*wd(i))).*(-zeta(i).*wn(i).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)+wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)); %transfer function of velocity
    hdd(i,:)=(1/(Mn(i)*wd(i))).*((zeta(i).*wn(i))^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)-zeta(i).*wn(i).*wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)-wd(i).*((zeta(i).*wn(i)).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t))-wd(i)^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)); %transfer function of acceleration
    qq=conv(fn(i,:),h(i,:))*dt;
    qqd=conv(fn(i,:),hd(i,:))*dt;
    qqdd=conv(fn(i,:),hdd(i,:))*dt;
    q(i,:)=qq(1:steps); % modal displacement
    qd(i,:)=qqd(1:steps); % modal velocity
    qdd(i,:)=qqdd(1:steps); % modal acceleration
end
x=Vectors*q; %displacement
v=Vectors*qd; %vecloity
a=Vectors*qdd; %vecloity
%Add noise to excitation and response
%--------------------------------------------------------------------------
f2=f+0.1*randn(2,10000);
a2=a+0.1*randn(2,10000);
v2=v+0.1*randn(2,10000);
x2=x+0.1*randn(2,10000);
%Plot displacement of first floor without and with noise
%--------------------------------------------------------------------------
figure;
subplot(3,2,1)
plot(t,f(1,:)); xlabel('Time (sec)');  ylabel('Force1'); title('First Floor');
subplot(3,2,2)
plot(t,f(2,:)); xlabel('Time (sec)');  ylabel('Force2'); title('Second Floor');
subplot(3,2,3)
plot(t,x(1,:)); xlabel('Time (sec)');  ylabel('DSP1');
subplot(3,2,4)
plot(t,x(2,:)); xlabel('Time (sec)');  ylabel('DSP2');
subplot(3,2,5)
plot(t,x2(1,:)); xlabel('Time (sec)');  ylabel('DSP1+Noise');
subplot(3,2,6)
plot(t,x2(2,:)); xlabel('Time (sec)');  ylabel('DSP2+Noise');
%Identify modal parameters using displacement with added uncertainty
%--------------------------------------------------------------------------
data=x2;
refch=2;
maxlags=999;
window=2000;
N=5;
p=0;
ncols=800;    
nrows=200;   
initialcut=2;
maxcut=20; 
shift=10;      
EMAC_option=1;
LimCMI=75;
LimMAC=50;
LimFreq=0.5;
Plot_option=1;
figure;
[Result1] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
figure;
[Result2] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
%Plot real and identified first modes to compare between them
%--------------------------------------------------------------------------
figure;
plot([0 ; -Vectors(:,1)],[0 1 2],'r*-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,1)],[0 1 2],'go-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,1)],[0 1 2],'y^--');
hold on
plot([0 ; -Vectors(:,2)],[0 1 2],'b^-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,2)],[0 1 2],'mv-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,2)],[0 1 2],'co--');
hold off
title('Real and Identified Mode Shapes');
legend('Mode 1 (Real)','Mode 1 (Identified using NExTF-ERA(Condensed))','Mode 1 (Identified using NExTT-ERA(Condensed))'...
      ,'Mode 2 (Real)','Mode 2 (Identified using NExTF-ERA(Condensed))','Mode 2 (Identified using NExTT-ERA(Condensed))');
xlabel('Amplitude');
ylabel('Floor');
grid on;
daspect([1 1 1]);
%Display real and Identified natural frequencies and damping ratios
%--------------------------------------------------------------------------
disp('Real and Identified Natural Drequencies and Damping Ratios of the First Mode'); 
disp(strcat('Real: Frequency=',num2str(Freq(1)),'Hz',' Damping Ratio=',num2str(zeta(1)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(1)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(1)),'%'));
disp('-----------')
disp('Real and Identified Natural Drequencies and Damping Ratios of the Second Mode');
disp(strcat('Real: Frequency=',num2str(Freq(2)),'Hz',' Damping Ratio=',num2str(zeta(2)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(2)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(2)),'%'));


🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] R. Pappa, K. Elliott, and A. Schenk, “A consistent-mode indicator for the eigensystem realization algorithm,” Journal of Guidance Control and Dynamics (1993), 1993.


[2] R. S. Pappa, G. H. James, and D. C. Zimmerman, “Autonomous modal identification of the space shuttle tail rudder,” Journal of Spacecraft and Rockets, vol. 35, no. 2, pp. 163–169, 1998.


[3] James, G. H., Thomas G. Carne, and James P. Lauffer. "The natural excitation technique (NExT) for modal parameter extraction from operating structures." Modal Analysis-the International Journal of Analytical and Experimental Modal Analysis 10.4 (1995): 260.


[4] Al Rumaithi, Ayad, "Characterization of Dynamic Structures Using Parametric and Non-parametric System Identification Methods" (2014). Electronic Theses and Dissertations. 1325.


[5] Al-Rumaithi, Ayad, Hae-Bum Yun, and Sami F. Masri. "A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes." Model Validation and Uncertainty Quantification, Volume 3. Springer, Cham, 2015. 113-133.

相关文章
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
23小时前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
23小时前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
25 14
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。

热门文章

最新文章