基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

简介: 基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

💥1 概述

自然激励技术(频率法和时间法)与特征系统实现算法和模态凝聚算法。用于识别受高斯白噪声激励影响的2DOF系统,并增加激励和响应的不确定性(也是高斯白噪声)。

具有模式凝聚的1时域NExT-ERA

----------------------------------------------------------------------

[结果] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)


输入:


data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据

引用的总长度: 参考通道的维科 .its 维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别采用每个参考通道)maxlags: 互相关函数

fs 中的滞后数: 采样频率

ncols: 汉克尔矩阵中的列数(大于 2/3*(maxlags+1) )


nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割:模式顺序的初始截止值 maxcut:模式顺序


偏移的最大截止值:最后一行和列块中的移位值(增加 EMAC 灵敏度)通常 =10

EMAC_option:如果此值等于 1,则 EMAC 将与列数无关(仅根据可观测性矩阵计算,而不是从可控性计算)


LimCMI:模式的最小允许CMI LimMAC & LimFreq:MAC的最小值和频率差的最大值,假设两种模式

指的是相同的实模

Plot_option:如果1绘制稳定图


输出:


结果:由以下组件

组成的结构 参数: NaFreq : 固有频率矢量

阻尼比:阻尼比矢量

模态形状:振型矩阵

指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性


MPC:模态相位共线性

CMI:一致模式指示器


具有模式凝聚的2频域NExT-ERA

----------------------------------------------------------------------

[结果] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)


输入:


data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据

refch 的总长度: 参考通道的总长度 .其维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别获取每个参考通道)

window: 窗口大小以获得光谱密度

N: 窗口数 p: 窗口

之间的重叠比率。从 0 到 1

fs: 采样频率

ncols: 汉克尔矩阵中的列数(大于 2/3*(ceil(窗口/2+1)-1))nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割: 模式阶数的初始截止值 maxcut: 模式阶


移位的最大截止值: 最后一行和列块中的移位值(增加 EMAC 灵敏度)


通常 =10

EMAC_option:如果此值等于 1,则 EMAC 将独立于列数(仅根据可观测性矩阵计算,而不是从可控性计算)LimCMI:

模式的最小允许 CMI LimMAC 和 LimFreq:MAC 的最小值和频率差的最大值,假设两种模式

指的是相同的实Plot_option模式

: 如果 1 绘制稳定图


输出:


结果:由以下组件

组成的结构 参数: NaFreq : 固有频率矢量

阻尼比:阻尼比矢量

模态形状:振型矩阵

指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性


MPC:模态相位共线性

CMI:一致模式指示器


📚2 运行结果

🌈3 Matlab代码实现

部分代码:

clc; clear; close all;
%Model Parameters and excitation
%--------------------------------------------------------------------------
M=[1 0; 0 1];
K=[2 -1; -1 1]*5;
C=0.0001*M+0.0001*K;
f=2*randn(2,10000);
fs=100;
%Apply modal superposition to get response
%--------------------------------------------------------------------------
n=size(f,1);
dt=1/fs; %sampling rate
[Vectors, Values]=eig(K,M);
Freq=sqrt(diag(Values))/(2*pi); % undamped natural frequency
steps=size(f,2);
Mn=diag(Vectors'*M*Vectors); % uncoupled mass
Cn=diag(Vectors'*C*Vectors); % uncoupled damping
Kn=diag(Vectors'*K*Vectors); % uncoupled stifness
wn=sqrt(diag(Values));
zeta=Cn./(sqrt(2.*Mn.*Kn));  % damping ratio
wd=wn.*sqrt(1-zeta.^2);
fn=Vectors'*f; % generalized input force matrix
t=[0:dt:dt*steps-dt];
for i=1:1:n
    h(i,:)=(1/(Mn(i)*wd(i))).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t); %transfer function of displacement
    hd(i,:)=(1/(Mn(i)*wd(i))).*(-zeta(i).*wn(i).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)+wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)); %transfer function of velocity
    hdd(i,:)=(1/(Mn(i)*wd(i))).*((zeta(i).*wn(i))^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)-zeta(i).*wn(i).*wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)-wd(i).*((zeta(i).*wn(i)).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t))-wd(i)^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)); %transfer function of acceleration
    qq=conv(fn(i,:),h(i,:))*dt;
    qqd=conv(fn(i,:),hd(i,:))*dt;
    qqdd=conv(fn(i,:),hdd(i,:))*dt;
    q(i,:)=qq(1:steps); % modal displacement
    qd(i,:)=qqd(1:steps); % modal velocity
    qdd(i,:)=qqdd(1:steps); % modal acceleration
end
x=Vectors*q; %displacement
v=Vectors*qd; %vecloity
a=Vectors*qdd; %vecloity
%Add noise to excitation and response
%--------------------------------------------------------------------------
f2=f+0.1*randn(2,10000);
a2=a+0.1*randn(2,10000);
v2=v+0.1*randn(2,10000);
x2=x+0.1*randn(2,10000);
%Plot displacement of first floor without and with noise
%--------------------------------------------------------------------------
figure;
subplot(3,2,1)
plot(t,f(1,:)); xlabel('Time (sec)');  ylabel('Force1'); title('First Floor');
subplot(3,2,2)
plot(t,f(2,:)); xlabel('Time (sec)');  ylabel('Force2'); title('Second Floor');
subplot(3,2,3)
plot(t,x(1,:)); xlabel('Time (sec)');  ylabel('DSP1');
subplot(3,2,4)
plot(t,x(2,:)); xlabel('Time (sec)');  ylabel('DSP2');
subplot(3,2,5)
plot(t,x2(1,:)); xlabel('Time (sec)');  ylabel('DSP1+Noise');
subplot(3,2,6)
plot(t,x2(2,:)); xlabel('Time (sec)');  ylabel('DSP2+Noise');
%Identify modal parameters using displacement with added uncertainty
%--------------------------------------------------------------------------
data=x2;
refch=2;
maxlags=999;
window=2000;
N=5;
p=0;
ncols=800;    
nrows=200;   
initialcut=2;
maxcut=20; 
shift=10;      
EMAC_option=1;
LimCMI=75;
LimMAC=50;
LimFreq=0.5;
Plot_option=1;
figure;
[Result1] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
figure;
[Result2] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
%Plot real and identified first modes to compare between them
%--------------------------------------------------------------------------
figure;
plot([0 ; -Vectors(:,1)],[0 1 2],'r*-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,1)],[0 1 2],'go-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,1)],[0 1 2],'y^--');
hold on
plot([0 ; -Vectors(:,2)],[0 1 2],'b^-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,2)],[0 1 2],'mv-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,2)],[0 1 2],'co--');
hold off
title('Real and Identified Mode Shapes');
legend('Mode 1 (Real)','Mode 1 (Identified using NExTF-ERA(Condensed))','Mode 1 (Identified using NExTT-ERA(Condensed))'...
      ,'Mode 2 (Real)','Mode 2 (Identified using NExTF-ERA(Condensed))','Mode 2 (Identified using NExTT-ERA(Condensed))');
xlabel('Amplitude');
ylabel('Floor');
grid on;
daspect([1 1 1]);
%Display real and Identified natural frequencies and damping ratios
%--------------------------------------------------------------------------
disp('Real and Identified Natural Drequencies and Damping Ratios of the First Mode'); 
disp(strcat('Real: Frequency=',num2str(Freq(1)),'Hz',' Damping Ratio=',num2str(zeta(1)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(1)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(1)),'%'));
disp('-----------')
disp('Real and Identified Natural Drequencies and Damping Ratios of the Second Mode');
disp(strcat('Real: Frequency=',num2str(Freq(2)),'Hz',' Damping Ratio=',num2str(zeta(2)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(2)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(2)),'%'));


🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] R. Pappa, K. Elliott, and A. Schenk, “A consistent-mode indicator for the eigensystem realization algorithm,” Journal of Guidance Control and Dynamics (1993), 1993.


[2] R. S. Pappa, G. H. James, and D. C. Zimmerman, “Autonomous modal identification of the space shuttle tail rudder,” Journal of Spacecraft and Rockets, vol. 35, no. 2, pp. 163–169, 1998.


[3] James, G. H., Thomas G. Carne, and James P. Lauffer. "The natural excitation technique (NExT) for modal parameter extraction from operating structures." Modal Analysis-the International Journal of Analytical and Experimental Modal Analysis 10.4 (1995): 260.


[4] Al Rumaithi, Ayad, "Characterization of Dynamic Structures Using Parametric and Non-parametric System Identification Methods" (2014). Electronic Theses and Dissertations. 1325.


[5] Al-Rumaithi, Ayad, Hae-Bum Yun, and Sami F. Masri. "A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes." Model Validation and Uncertainty Quantification, Volume 3. Springer, Cham, 2015. 113-133.

相关文章
|
12天前
|
缓存 监控 算法
基于 C# 网络套接字算法的局域网实时监控技术探究
在数字化办公与网络安全需求增长的背景下,局域网实时监控成为企业管理和安全防护的关键。本文介绍C#网络套接字算法在局域网实时监控中的应用,涵盖套接字创建、绑定监听、连接建立和数据传输等操作,并通过代码示例展示其实现方式。服务端和客户端通过套接字进行屏幕截图等数据的实时传输,保障网络稳定与信息安全。同时,文章探讨了算法的优缺点及优化方向,如异步编程、数据压缩与缓存、错误处理与重传机制,以提升系统性能。
33 2
|
19天前
|
监控 网络协议 算法
基于问题“如何监控局域网内的电脑”——Node.js 的 ARP 扫描算法实现局域网内计算机监控的技术探究
在网络管理与安全领域,监控局域网内计算机至关重要。本文探讨基于Node.js的ARP扫描算法,通过获取IP和MAC地址实现有效监控。使用`arp`库安装(`npm install arp`)并编写代码,可定期扫描并对比设备列表,判断设备上线和下线状态。此技术适用于企业网络管理和家庭网络安全防护,未来有望进一步提升效率与准确性。
33 8
|
5月前
|
人工智能 自然语言处理 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-07(下)
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-07(下)
50 2
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-07(下)
|
5月前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-05(下)
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-05(下)
49 1
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-05(下)
|
4月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
96 3
|
5月前
|
存储 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-13(上)
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-13(上)
68 2
|
5月前
|
传感器 自然语言处理 安全
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-07(上)
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-07(上)
61 2
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-16
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-16
66 1
|
5月前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-15
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-15
142 1