基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

简介: 基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

💥1 概述

自然激励技术(频率法和时间法)与特征系统实现算法和模态凝聚算法。用于识别受高斯白噪声激励影响的2DOF系统,并增加激励和响应的不确定性(也是高斯白噪声)。

具有模式凝聚的1时域NExT-ERA

----------------------------------------------------------------------

[结果] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)


输入:


data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据

引用的总长度: 参考通道的维科 .its 维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别采用每个参考通道)maxlags: 互相关函数

fs 中的滞后数: 采样频率

ncols: 汉克尔矩阵中的列数(大于 2/3*(maxlags+1) )


nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割:模式顺序的初始截止值 maxcut:模式顺序


偏移的最大截止值:最后一行和列块中的移位值(增加 EMAC 灵敏度)通常 =10

EMAC_option:如果此值等于 1,则 EMAC 将与列数无关(仅根据可观测性矩阵计算,而不是从可控性计算)


LimCMI:模式的最小允许CMI LimMAC & LimFreq:MAC的最小值和频率差的最大值,假设两种模式

指的是相同的实模

Plot_option:如果1绘制稳定图


输出:


结果:由以下组件

组成的结构 参数: NaFreq : 固有频率矢量

阻尼比:阻尼比矢量

模态形状:振型矩阵

指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性


MPC:模态相位共线性

CMI:一致模式指示器


具有模式凝聚的2频域NExT-ERA

----------------------------------------------------------------------

[结果] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)


输入:


data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据

refch 的总长度: 参考通道的总长度 .其维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别获取每个参考通道)

window: 窗口大小以获得光谱密度

N: 窗口数 p: 窗口

之间的重叠比率。从 0 到 1

fs: 采样频率

ncols: 汉克尔矩阵中的列数(大于 2/3*(ceil(窗口/2+1)-1))nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割: 模式阶数的初始截止值 maxcut: 模式阶


移位的最大截止值: 最后一行和列块中的移位值(增加 EMAC 灵敏度)


通常 =10

EMAC_option:如果此值等于 1,则 EMAC 将独立于列数(仅根据可观测性矩阵计算,而不是从可控性计算)LimCMI:

模式的最小允许 CMI LimMAC 和 LimFreq:MAC 的最小值和频率差的最大值,假设两种模式

指的是相同的实Plot_option模式

: 如果 1 绘制稳定图


输出:


结果:由以下组件

组成的结构 参数: NaFreq : 固有频率矢量

阻尼比:阻尼比矢量

模态形状:振型矩阵

指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性


MPC:模态相位共线性

CMI:一致模式指示器


📚2 运行结果

🌈3 Matlab代码实现

部分代码:

clc; clear; close all;
%Model Parameters and excitation
%--------------------------------------------------------------------------
M=[1 0; 0 1];
K=[2 -1; -1 1]*5;
C=0.0001*M+0.0001*K;
f=2*randn(2,10000);
fs=100;
%Apply modal superposition to get response
%--------------------------------------------------------------------------
n=size(f,1);
dt=1/fs; %sampling rate
[Vectors, Values]=eig(K,M);
Freq=sqrt(diag(Values))/(2*pi); % undamped natural frequency
steps=size(f,2);
Mn=diag(Vectors'*M*Vectors); % uncoupled mass
Cn=diag(Vectors'*C*Vectors); % uncoupled damping
Kn=diag(Vectors'*K*Vectors); % uncoupled stifness
wn=sqrt(diag(Values));
zeta=Cn./(sqrt(2.*Mn.*Kn));  % damping ratio
wd=wn.*sqrt(1-zeta.^2);
fn=Vectors'*f; % generalized input force matrix
t=[0:dt:dt*steps-dt];
for i=1:1:n
    h(i,:)=(1/(Mn(i)*wd(i))).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t); %transfer function of displacement
    hd(i,:)=(1/(Mn(i)*wd(i))).*(-zeta(i).*wn(i).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)+wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)); %transfer function of velocity
    hdd(i,:)=(1/(Mn(i)*wd(i))).*((zeta(i).*wn(i))^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)-zeta(i).*wn(i).*wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)-wd(i).*((zeta(i).*wn(i)).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t))-wd(i)^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)); %transfer function of acceleration
    qq=conv(fn(i,:),h(i,:))*dt;
    qqd=conv(fn(i,:),hd(i,:))*dt;
    qqdd=conv(fn(i,:),hdd(i,:))*dt;
    q(i,:)=qq(1:steps); % modal displacement
    qd(i,:)=qqd(1:steps); % modal velocity
    qdd(i,:)=qqdd(1:steps); % modal acceleration
end
x=Vectors*q; %displacement
v=Vectors*qd; %vecloity
a=Vectors*qdd; %vecloity
%Add noise to excitation and response
%--------------------------------------------------------------------------
f2=f+0.1*randn(2,10000);
a2=a+0.1*randn(2,10000);
v2=v+0.1*randn(2,10000);
x2=x+0.1*randn(2,10000);
%Plot displacement of first floor without and with noise
%--------------------------------------------------------------------------
figure;
subplot(3,2,1)
plot(t,f(1,:)); xlabel('Time (sec)');  ylabel('Force1'); title('First Floor');
subplot(3,2,2)
plot(t,f(2,:)); xlabel('Time (sec)');  ylabel('Force2'); title('Second Floor');
subplot(3,2,3)
plot(t,x(1,:)); xlabel('Time (sec)');  ylabel('DSP1');
subplot(3,2,4)
plot(t,x(2,:)); xlabel('Time (sec)');  ylabel('DSP2');
subplot(3,2,5)
plot(t,x2(1,:)); xlabel('Time (sec)');  ylabel('DSP1+Noise');
subplot(3,2,6)
plot(t,x2(2,:)); xlabel('Time (sec)');  ylabel('DSP2+Noise');
%Identify modal parameters using displacement with added uncertainty
%--------------------------------------------------------------------------
data=x2;
refch=2;
maxlags=999;
window=2000;
N=5;
p=0;
ncols=800;    
nrows=200;   
initialcut=2;
maxcut=20; 
shift=10;      
EMAC_option=1;
LimCMI=75;
LimMAC=50;
LimFreq=0.5;
Plot_option=1;
figure;
[Result1] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
figure;
[Result2] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
%Plot real and identified first modes to compare between them
%--------------------------------------------------------------------------
figure;
plot([0 ; -Vectors(:,1)],[0 1 2],'r*-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,1)],[0 1 2],'go-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,1)],[0 1 2],'y^--');
hold on
plot([0 ; -Vectors(:,2)],[0 1 2],'b^-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,2)],[0 1 2],'mv-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,2)],[0 1 2],'co--');
hold off
title('Real and Identified Mode Shapes');
legend('Mode 1 (Real)','Mode 1 (Identified using NExTF-ERA(Condensed))','Mode 1 (Identified using NExTT-ERA(Condensed))'...
      ,'Mode 2 (Real)','Mode 2 (Identified using NExTF-ERA(Condensed))','Mode 2 (Identified using NExTT-ERA(Condensed))');
xlabel('Amplitude');
ylabel('Floor');
grid on;
daspect([1 1 1]);
%Display real and Identified natural frequencies and damping ratios
%--------------------------------------------------------------------------
disp('Real and Identified Natural Drequencies and Damping Ratios of the First Mode'); 
disp(strcat('Real: Frequency=',num2str(Freq(1)),'Hz',' Damping Ratio=',num2str(zeta(1)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(1)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(1)),'%'));
disp('-----------')
disp('Real and Identified Natural Drequencies and Damping Ratios of the Second Mode');
disp(strcat('Real: Frequency=',num2str(Freq(2)),'Hz',' Damping Ratio=',num2str(zeta(2)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(2)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(2)),'%'));


🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] R. Pappa, K. Elliott, and A. Schenk, “A consistent-mode indicator for the eigensystem realization algorithm,” Journal of Guidance Control and Dynamics (1993), 1993.


[2] R. S. Pappa, G. H. James, and D. C. Zimmerman, “Autonomous modal identification of the space shuttle tail rudder,” Journal of Spacecraft and Rockets, vol. 35, no. 2, pp. 163–169, 1998.


[3] James, G. H., Thomas G. Carne, and James P. Lauffer. "The natural excitation technique (NExT) for modal parameter extraction from operating structures." Modal Analysis-the International Journal of Analytical and Experimental Modal Analysis 10.4 (1995): 260.


[4] Al Rumaithi, Ayad, "Characterization of Dynamic Structures Using Parametric and Non-parametric System Identification Methods" (2014). Electronic Theses and Dissertations. 1325.


[5] Al-Rumaithi, Ayad, Hae-Bum Yun, and Sami F. Masri. "A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes." Model Validation and Uncertainty Quantification, Volume 3. Springer, Cham, 2015. 113-133.

相关文章
|
1月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
2月前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
30 0
|
2月前
|
算法 数据安全/隐私保护
星座图整形技术在光纤通信中的matlab性能仿真,分别对比标准QAM,概率整形QAM以及几何整形QAM
本文介绍了现代光纤通信系统中的星座图整形技术,包括标准QAM、概率整形QAM和几何整形QAM三种方法,并对比了它们的原理及优缺点。MATLAB 2022a仿真结果显示了不同技术的效果。标准QAM实现简单但效率有限;概率整形QAM通过非均匀符号分布提高传输效率;几何整形QAM优化星座点布局,增强抗干扰能力。附带的核心程序代码展示了GMI计算过程。
119 0
|
4月前
|
算法 JavaScript 前端开发
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
326 1
|
3月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
4月前
|
机器学习/深度学习 算法 搜索推荐
支付宝商业化广告算法问题之在DNN模型中,特征的重要性如何评估
支付宝商业化广告算法问题之在DNN模型中,特征的重要性如何评估
|
6月前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
6月前
|
机器学习/深度学习 存储 人工智能
算法金 | 使用随机森林获取特征重要性
**随机森林算法简介**:集成多个决策树提升性能,常用于各类任务。在葡萄酒分类项目中,使用`RandomForestClassifier`实现模型,100棵树,得分100%。特征重要性显示了哪些化学成分影响最大。通过特征选择保持高准确性,证明了有效特征选择的重要性。7个关键特征中脯氨酸和酒精含量最重要。简洁高效,适用于特征工程。[链接指向知识星球]
75 5
|
6月前
|
人工智能 搜索推荐 算法
常见的经典排序算法及其特征
【6月更文挑战第21天】本文介绍经典排序算法的特征和例子,详细步骤和例子包含在内,可以只选择阅读关心的内容。
65 3
|
6月前
|
移动开发 算法 计算机视觉
技术笔记:openCV特征点识别与findHomography算法过滤
技术笔记:openCV特征点识别与findHomography算法过滤
108 0