【算法入门&图论】【模板】拓扑排序|【模板】单源最短路2 |最小生成树(下)

简介: 【算法入门&图论】【模板】拓扑排序|【模板】单源最短路2 |最小生成树

2、AB14 最小生成树

题目链接:最小生成树


ef33f317f7c543bcb4e23a6d067afb09.png


2.1、解题思路

本题要求在最小花费下将 n 户人家连接起来,很显然是最小生成树的问题,我采用prim算法:


将二维数组cost按权升序排序,那么cost[0][2]就是最小的一个权值

将连接这条边的两个顶点放入unordered_set容器:

unordered_set 容器的元素是无序的,可以用来给顶点去重

内置的 find 方法也很好用

接下来遍历cost二维数组,直到所有顶点全部放入容器中,遍历结束

将遍历中权值的和返回,程序结束

2.2、代码实现与注释

本题源码:

class Solution {
  public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 返回最小的花费代价使得这n户人家连接起来
     * @param n int n户人家的村庄
     * @param m int m条路
     * @param cost intvector<vector<>> 一维3个参数,表示连接1个村庄到另外1个村庄的花费的代价
     * @return int
     */
    // 自定义排序规则:按权递增
    static bool cmp(vector<int>& x, vector<int>& y) {
        return x[2] < y[2];
    }
    int miniSpanningTree(int n, int m, vector<vector<int> >& cost) {
        unordered_set<int> points; // 记录不重复的点
        int res = 0;
        sort(cost.begin(), cost.end(), cmp);
        res += cost[0][2]; // 此时res 为最小权值
        // 将最小边加入
        points.insert(cost[0][0]);
        points.insert(cost[0][1]);
        while (1) {
            if (points.size() == n)
                break; // 所有的点连同后退出循环
            // 遍历剩余的边
            for (auto it = cost.begin(); it != cost.end(); it++) {
                // 如果边仅有一个点在集合内就加入
                if ((points.find((*it)[0]) != points.end() &&
                    points.find((*it)[1]) == points.end()) ||
                    (points.find((*it)[1]) != points.end() &&
                    points.find((*it)[0]) == points.end()))
                    {
                        res += (*it)[2];
                        points.insert((*it)[0]);
                        points.insert((*it)[1]);
                        cost.erase(it); // 删除该边
                        break;
                    }
            }
        }
        return res;
    }
};

重要注释:


cmp 是自定义的一个按权递增的排序函数,配合sort函数来将cost排序

相关知识点可以参考我的博文:自定义排序规则

auto关键字可以自动推导表达式类型,在这里就相当于vector<vector<int>>::iterator

if的条件很长,但其实就是将有且仅有一个顶点在points中的边找到:

获取该边的权值并求和,将另一顶点插入到points 中

将该边删除,重新遍历cost,直到全部顶点被插入到points中

最终的 res 就是该题的结果,即最小花费。

3、AB15 单源最短路2

题目链接:单源最短路2

9794408295f4486f98c87be1c595da6b.png

3.1、解题思路

使用Dijkstra算法(即不断从未处理集合中找当前距离源点最近的顶点以添加到已处理集合中,直至未处理集合为空的算法思想)


对于无向图,采用邻接矩阵表示点与点的连接关系以及距离

使用数组dist记录每个顶点与源点的距离:

本题中就是记录顶点1与其他顶点的距离

用一个布尔类型的数组记录顶点的处理情况:

初始状态全部设为false,一经处理就设为true

最终dist[n]就是顶点n到源点的最短距离

3.2、代码实现与注释

本题源码

#include<iostream>
#include<climits> // 使用INT_MAX所需要引入的头文件
using namespace std;
const int N = 5000; // 注意题干,图的点数是固定值5000
int main() {
    int G[N + 1][N + 1]; // 用于模拟邻接矩阵进行建图
    for (int i = 1; i <= N; i++) {
        for (int j = 1; j <= N; j++) {
            G[i][j] = INT_MAX; // 先将邻接矩阵全部初始化为无穷大
        }
    }
    int n, m;
    cin >> n >> m;
    int u, v, w;
    for (int i = 1; i <= m; i++) {
        cin >> u >> v >> w;
        G[u][v] = w;
        G[v][u] = w; // 需要关于主对角线对称,因此两边都需要存储
    }
    int dist[N + 1]; // 用于存储每个顶点当前与源点的最短距离
    bool flag[N + 1]; // 用于记录每个顶点是否已经完成与源点最短距离的计算处理
    for (int i = 1; i <= N; i++) {
        dist[i] = G[1][i]; // 初始设置为邻接矩阵中源点所在 行 的权值
        flag[i] = false;
    }
    dist[1] = 0;
    flag[1] = true; // 将源点加入已处理集合
    for (int i = 2; i <= N; i++) {
        int tmp = INT_MAX, index = 1;
        for (int j = 1; j <= N; j++) { // 遍历寻找与源点的最短距离
            if (flag[j] == false && dist[j] < tmp) {
                tmp = dist[j];
                index = j;
            }
        }
        if (index != 1) {
            flag[index] = true; // 找到后将其加入已处理集合
        }
        for (int j = 2; j <= N; j++) {
            if (flag[j] == false && G[index][j] != INT_MAX) {
                if (G[index][j] + dist[index] < dist[j]) {
                    dist[j] = G[index][j] + dist[index]; // 更新最短路径
                }
            }
        }
    }
    if (dist[n] != INT_MAX) {
        cout << dist[n];
    } else {
        cout << -1;
    }
    return 0;
}

重要注释:


二维数组G是具化出的邻接矩阵,将元素值全部初始化为无穷大:INT_MAX

u,v记录两个顶点,w记录顶点间距离,全部存入G中

dist数组用来存放各顶点到源点的距离,flag数组记录顶点是否被处理过

index代表着与源点连接且距离最短的未经处理的顶点:

随后将该顶点设为已处理

然后index寻找与之相连且未经处理的顶点:

dist[index]是index到源点的最短距离,如果加上与之相连的顶点的距离较小,那么就更新最短路径

最终的dist数组的值就是各点到源点的最短路径


目录
相关文章
|
20天前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
19 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
26天前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
26天前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
19天前
|
算法
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
28 0
|
21天前
|
算法 决策智能
基于prim算法求出网络最小生成树实现网络社团划分和规划
该程序使用MATLAB 2022a版实现路线规划,通过排序节点权值并运用Prim算法生成最小生成树完成网络规划。程序基于TSP问题,采用遗传算法与粒子群优化算法进行路径优化。遗传算法通过编码、选择、交叉及变异操作迭代寻优;粒子群优化算法则通过模拟鸟群觅食行为,更新粒子速度和位置以寻找最优解。
|
26天前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
65 0
|
26天前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
8天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
5天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。