医学影像大数据时代下,将如何推动智能化医疗发展?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

通常大数据是指数据量和数据维度均很大,数据形式也很广泛,如数字、文本、图像、声音等等。在医学领域,随着信息化的不断深入,医学数据也越来越丰富,其中医学影像数据是一个十分重要的组成部分,而且,医学影像信息被数字化、数据化后形成了丰富多样的、存储量庞大的医学大数据。今天,我们就讨论一下利用医学影像大数据推动智能化医疗发展方面的话题。

IBM的智能医学影像分析项目-Watson计划

据报道,IT巨头IBM将以10亿美元收购医学成像设备提供商Merge Healthcare,后者主要帮助医生和医院存储和分析CAT断层扫描、X射线以及其他医学影像。IBM计划将Merge的技术整合到自身的Watson人工智能技术中去。IBM认为,Watson的认知计算能力在医学造影方面完全可以辨别患者应该接受X射线、CAT还是核磁共振,现在独缺的是客户以及医学影像资料,而这恰好也是Merge可以提供的资源。

目前医疗数据中有超过90%来自于医学影像,但是这些数据大多要进行人工分析。如果能够运用人工智能技术分析医学影像,并将影像与医学文本记录进行交叉对比,就能够极大地降低医学诊断上的失误,帮助医生精准诊断,挽救患者生命。

IBM的Watson计划想法很好,但是依然存在着诸多挑战。最大的问题在于如何证明这个计划的效果,如何向健康保险公司证明对于Watson的投资物有所值。具体地说,Watson计划能否真正地让患者得到准确的诊断,传统的放射科医师忽略的诊断方面的问题能否让IBM的智能技术发现。

中国人“数字肺”项目

我们再回过头来看看国内。进入数字化时代,数字化、标准化、网络化、海量存储和大数据的应用,已成为医学发展的主流方向和重要标志。大数据的发展要求医院要改变传统的医疗模式-把疾病的早预防、早诊断、早治疗等服务放在第一位考虑。随着人们期待更好的医疗卫生保健服务,从出生到死亡的全程医疗服务也已经成为了医疗管理新模式的发展方向。通过互联网络把预防、诊断和临床作业过程纳入到数字化网络中,实现这些重要任务的核心环节就是医学影像信息化,充分体现大数据、实时在线、多点传输与共享给现代医疗带来的好处。

据报道,由北京医院等国内知名大医院联合与合作,开展了中国人“数字肺”项目-“基于医学影像大数据的呼吸系统疾病辅助诊断平台”。项目以构建具有统计学意义的中国人“数字肺”,揭示支气管、肺血管和肺实质结构与不同主要肺部疾病之间的关系,通过采用数据挖掘与量化分析技术,分析、处理和量化COPD、支气管哮喘、支气管扩张、肺间质性疾病、肺栓塞和孤立性肺结节的评价体系和诊断标准。目前,该项目已经在健康成人支气管树不对称分叉特性的研究、低剂量CT扫描的对支气管定量测量的评价研究、吸烟对肺组织损伤的纵向研究、肺血管改变与肺气肿定量的动态评估等方面取得了进展,获得了一系列卓有成效的研究成果。

影像大数据-早期肺癌筛查平台

在大数据盛行的今天,大型影像诊断设备结合大数据分析提供更准确的诊断报告显然是越来越可行和越来越可靠的事情。据报道,由上海多家大型医疗机构合作开展了“上海地区早期肺癌的影像学筛查及诊断研究”项目。该项目通过多家医院多中心采集、共享并研究早期肺癌病例数据样本,制定早期肺癌高危人群预警指标,进而建立一套肺癌筛查及早期诊断的最佳方案和标准流程。同时,在多中心研究基础上,建立可拓展、可挖掘的上海市早期肺癌患者数据库。该平台涵盖调查问卷、患者信息管理、影像阅览、肺结节CAD检测、结构化诊断报告、远程会诊、病人随访、统计分析等筛查全过程,为研究项目提供坚实技术基础。目前,该早期肺癌筛查平台已实现上海多家三甲医院数据互联,支持多家医院在线实时会诊、资源共享;此外,通过人工智能技术自动精准识别小肺结节,可帮助医生减少漏诊。

针对早期肺癌难以发现、容易漏诊的问题,该早期肺癌筛查平台融入了肺癌计算机辅助检测(CAD)引擎,可自动精准识别影像中直径更小的肺结节,计算并提供结节大小、密度等量化参数供医生参考。同时,参考世界先进成熟的肺癌筛查平台,采用结构化报告,实行“双盲模式”—第一份报告不参考CAD检测,作为初诊,第二份报告参考CAD,完成终审报告,人机相互对照参考,改变以往早期肺癌筛查中医生仅靠主观诊断的筛查模式,以减少漏诊几率。

影像大数据挖掘

数据挖掘从数据形式和相关技术上说,大致可以划分为结构数据挖掘和非结构数据挖掘。所谓结构数据挖掘是基于结构化的数据基础上的知识发现,例如我们常见的关系型数据,包括数值型数据、字符型数据、日期型数据等等,应用相关的数据挖掘技术对这些关系型数据开展分析。而所谓非结构数据挖掘是基于非结构化的数据基础上的知识发现,例如我们常见的自然语言文本数据、各种图像数据、各种音频数据等等,基于这些类型的数据开展数据挖掘分析。

医学影像数据挖掘就是非结构数据挖掘的一种,它有如下几个主要特点:

1、影像数据一般具有相对的含义,而结构化数据一般具有绝对的含义。

2、影像内容的理解具有主观性的特点,对影像信息可以有多种不同理解,并依赖于影像表示方法和应用领域专业知识。

3、影像信息中包含影像数据对象的空间关系信息。

从目前的影像数据挖掘技术的现状来说,原始影像一般还不能直接用于影像数据挖掘分析,必须进行预处理,以生成可用于高层次挖掘的影像特征库。影像数据挖掘的一般流程通常包括影像的存储、影像的预处理、影像的搜索、影像的挖掘和展示等步骤。

影像数据挖掘方案

目前,影像数据挖掘方案主要有功能驱动型模型和信息驱动型模型。

所谓功能驱动型模型是以不同的功能模块来组织,功能驱动的影像数据挖掘是针对具体应用的特定要求来设计数据挖掘方案的,通常包括:

1、影像采集模块-从影像数据库中抽取影像数据;

2、预处理模块-提取影像特征,并把特征信息存放在特征数据库中;

3、搜索引擎-利用影像特征信息进行匹配查询;

4、知识发现模块-对影像数据进行算法分析,以发现数据的主题、特征、关系等规律。

所谓信息驱动型模型,是针对影像的原始信息开展基于内容的影像数据挖掘的方案。该方案基于原始特征的对象或区域信息,利用挖掘算法和专业知识将整幅影像进行有意义地分割,然后开展高层次地计算与挖掘分析,从而推导出具有高层次语义的、易用的、易于理解的模式。该方案将影像信息划分为四个层次:

1、象素层-由原始影像信息和原始影像特征组成,如象素点、纹理、形状和色彩等。

2、对象层-处理基于象素层原始特征的对象和区域信息。

3、语义层:结合专业知识从识别出的对象和区域中生成高层次的语义概念。

4、知识层:可结合与某一专业相关的文字和数字信息发现潜在的领域知识和模式。

在信息驱动方案中,象素层和对象层主要进行影像处理、对象识别和特征提取,而语义层和知识层主要进行影像数据挖掘和知识整合。该方案可以在每个层次上以及不同层次间开展数据挖掘分析。

影像数据挖掘算法

与结构化数据挖掘的步骤和算法相类似,影像数据挖掘的技术主要包括:影像数据预处理技术:如去噪、对比度增强、影像分割等等;特征提取和模式技术;如分类、规则提取、预测和聚类等等,既包括有监督学习也包含无监督学习。下面,我们就简单介绍一下有监督学习的分类技术和无监督学习的聚类技术。

基于影像数据的分类技术流程主要分为三步:

1、建立影像表示模型,对已进行类标记的影像样本数据进行特征提取,并建立每一影像的属性描述;

2、对样本数据集进行训练和学习,得到具有相当分类精度的分类模型;

3、根据分类模型对未标记的影像数据集进行自动分类判别。

影像数据分类的挑战性在于,如何建立低层可视特征和高层语义分类间的映射关系。

基于影像数据的聚类技术,是根据没有先验知识的影像数据分布,将无类别标记的影像数据划分为有含义的不同簇,通常包括四个步骤:

1、影像特征提取和选择;

2、建立影像相似性模型;

3、尝试不同的聚类算法;

4、评估最佳的分组方案。

影像数据聚类的挑战性在于,如何在分簇未知的情况下,如何科学地找到一个最佳的分类方案。

影像数据挖掘应用

人脑是高度复杂的时空动力系统。基于神经影像大数据,群组独立成分分析(ICA)作为一种信息驱动型算法,被广泛应用于探索人脑系统的时空特性。据文献报道,中国科学院心理研究所研发出一种在多被试神经影像数据中挖掘被试分组(亚组)的群组ICA方法-gRAICAR。模拟数据显示,gRAICAR可以精确地揭示脑功能网络的个体间差异。进一步地,基于实际静息态功能磁共振成像数据,gRAICAR不仅能够估计每个脑功能网络的被试间的一致性,揭示被试间在脑功能上的相似关系,而且可以据此探测具有较高一致性的亚组。gRAICAR成为完全的信息驱动方法,为科研人员基于数据产生进一步的科学假设提供参考,将为深入挖掘多被试神经影像数据,为建立与心理精神相关脑功能疾病的神经影像标志提供有力工具,为“开放式神经科学”提供方法学支撑。

gRAICAR可以说是影像数据挖掘在神经学领域中的一个应用。当然,影像数据挖掘肯定会在更广泛的医学领域中发挥着重要的作用,必将成为现代医学走向智能医疗的一个利器!

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
运维 算法 数据可视化
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】2 方案设计与实现-Python
文章详细介绍了参加2021高校大数据挑战赛中智能运维异常检测与趋势预测任务的方案设计与Python实现,包括问题一的异常点和异常周期检测、问题二的异常预测多变量分类问题,以及问题三的多变量KPI指标预测问题的算法过程描述和代码实现。
59 0
|
4月前
|
机器学习/深度学习 搜索推荐 大数据
大数据在医疗健康领域的革新作用
【6月更文挑战第1天】大数据在医疗健康领域展现出巨大潜力,助力疾病预测、精准诊断和个性化治疗。通过分析医疗数据,预测风险、辅助诊断,并定制治疗方案。示例代码展示了使用LogisticRegression进行疾病预测。随着技术发展,大数据将为医疗健康带来革命性进步,保障人类健康。
106 1
|
15天前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
22 6
|
18天前
|
人工智能 编解码 搜索推荐
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
|
3月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
329 8
|
2月前
|
机器学习/深度学习 运维 算法
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
对2021高校大数据挑战赛中智能运维异常检测与趋势预测赛题的赛后总结与分析,涉及赛题解析、不足与改进,并提供了异常检测、异常预测和趋势预测的方法和模型选择的讨论。
84 0
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
|
3月前
|
人工智能 数据安全/隐私保护
数据平台演进问题之智能化数据平台会面临什么样的挑战
数据平台演进问题之智能化数据平台会面临什么样的挑战
|
4月前
|
人工智能 分布式计算 DataWorks
首批!阿里云 MaxCompute 完成中国信通院数据智能平台专项测试
2024年5月31日,在中国信通院组织的首批数据智能平台专项测试中,阿里云数据智能平台解决方案(MaxCompute、DataWorks、PAI)顺利完成测试。
257 5
首批!阿里云 MaxCompute 完成中国信通院数据智能平台专项测试
|
3月前
|
存储 分布式计算 数据可视化
ERP系统中的大数据分析与处理:驱动企业智能决策
【7月更文挑战第29天】 ERP系统中的大数据分析与处理:驱动企业智能决策
261 0
|
3月前
|
人工智能 自然语言处理 小程序
政务VR导航:跨界融合AI人工智能与大数据分析,打造全方位智能政务服务
政务大厅引入智能导航系统,解决寻路难、指引不足及咨询台压力大的问题。VR导视与AI助手提供在线预览、VR路线指引、智能客服和小程序服务,提高办事效率,减轻咨询台工作,优化群众体验,塑造智慧政务形象。通过线上线下结合,实现政务服务的高效便民。
98 0
政务VR导航:跨界融合AI人工智能与大数据分析,打造全方位智能政务服务