Python|利用代码求三角形最小路径和

简介: Python|利用代码求三角形最小路径和

问题描述

题目:给定一个三角形,每一步只能移动到下一行中相邻的结点上,求出自顶向下的最小路径和。

例如:

[

    [2],

   [3,4],

  [6,5,7],

 [4,1,8,3]

]

自顶向下的最小路径和为 11(即:2 + 3 + 5 + 1 = 11)。

解决方案

首先,这是一个一维动态规划问题,动态规划一般都是从下到上走。将dp数组初始化为‘三角形’最后一行的值,然后从倒数第二层开始向上,依次更改的dp数组中元素的个数,遍历到第几层就更改dp数组前面(那一层的长度)个。以问题描述中的例子为例:

初始化:[4,1,8,3]倒数第一层:[4,1,8,3]

第一次:[7,6,10,3]倒数第二层:[6,5,7]

第二次:[9,10,10,3]倒数第三层:[3,4]

第三次:[11,10,10,3]倒数第四层:[2]

计算过程很简单,以dp[i]表示由第i+1层到第i层的第i个元素的最小路径和,以j表示列数。dp[i]=下方与它相邻的两个值中的较小者的值+当前元素值,比如min(4,1)+6=7;min(1,8)+5=6;最后的dp[0]就是路径和的最小值。

这个计算式子也就是状态转移方程:dp[j] = min(dp[j], dp[j+1]) + triangle[i][j]

完整代码:

class Solution(object):

    def minimumTotal(triangle):

        # 获取triangle的长度,也就是‘三角形’的高

        n = len(triangle)

        # 初始化dp为‘三角形’最后那一行

        dp = triangle[-1]

        # 从下(倒数第二层)到上

        for i in range(n-2, -1, -1):

            # 更改dp前j个的值

            for j in range(i+1):

                dp[j] = min(dp[j], dp[j+1]) + triangle[i][j]

        # 返回dp第一个值

        return dp[0]

结语

这是一道很简单的动态规划题目,主要思路就是找到状态转移函数。

动态规划其实存在一定的套路。当求解的问题满足以下条件时,就应该使用动态规划:主问题的可分解为很多的子问题(可以利用递归求解)并且递归求解时,很多子问题的答案会被多次重复利用。例如:斐波那契数列。


目录
相关文章
|
1月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
38 6
|
2月前
|
存储 缓存 测试技术
Python中的装饰器:功能增强与代码复用的利器
在Python编程中,装饰器是一种强大而灵活的工具,它允许开发者以简洁优雅的方式增强函数或方法的功能。本文将深入探讨装饰器的定义、工作原理、应用场景以及如何自定义装饰器。通过实例演示,我们将展示装饰器如何在不修改原有代码的基础上添加新的行为,从而提高代码的可读性、可维护性和复用性。此外,我们还将讨论装饰器在实际应用中的一些最佳实践和潜在陷阱。
|
9天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
51 33
|
10天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
36 10
|
2月前
|
人工智能 数据挖掘 Python
Python编程基础:从零开始的代码旅程
【10月更文挑战第41天】在这篇文章中,我们将一起探索Python编程的世界。无论你是编程新手还是希望复习基础知识,本文都将是你的理想之选。我们将从最基础的语法讲起,逐步深入到更复杂的主题。文章将通过实例和练习,让你在实践中学习和理解Python编程。让我们一起开启这段代码之旅吧!
|
29天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
68 8
|
1月前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
55 11
|
1月前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
42 11
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
51 6