python opencv 图像处理 (十)

简介: python opencv 图像处理 (十)

Roberts算子、Prewitt算子、Sobel算子、Laplacian算子边缘检测技术

Roberts算子


Roberts 算子,又称罗伯茨算子,是一种最简单的算子,是一种利用局部差分算子寻找边缘的算子。他采用对角线方向相邻两象素之差近似梯度幅值检测边缘。检测垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感,无法抑制噪声的影响。


1963年, Roberts 提出了这种寻找边缘的算子。 Roberts 边缘算子是一个 2×2 的模版,采用的是对角方向相邻的两个像素之差。


Roberts 算子的模板分为水平方向和垂直方向,如下所示,从其模板可以看出, Roberts 算子能较好的增强正负 45 度的图像边缘。


ab6bb1a7bb624faca96e8a82ad539288.png

Roberts 算子在水平方向和垂直方向的计算公式如下

Roberts 算子像素的最终计算公式如下

3e86f5253bc9421cba0aa19cd2bb91e7.png

实现 Roberts 算子,我们主要通过 OpenCV 中的 filter2D() 这个函数,这个函数的主要功能是通过卷积核实现对图像的卷积运算


def filter2D(src, ddepth, kernel, dst=None, anchor=None, delta=None, borderType=None)


  • src: 输入图像
  • ddepth: 目标图像所需的深度
  • kernel: 卷积核

代码实现如下:


import cv2 as cv
    import matplotlib.pyplot as plt
    # 读取图像
    img = cv.imread('data.jpg', cv.COLOR_BGR2GRAY)
    rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
    # 灰度化处理图像
    grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    # Roberts 算子
    kernelx = np.array([[-1, 0], [0, 1]], dtype=int)
    kernely = np.array([[0, -1], [1, 0]], dtype=int)
    x = cv.filter2D(grayImage, cv.CV_16S, kernelx)
    y = cv.filter2D(grayImage, cv.CV_16S, kernely)
    # 转 uint8 ,图像融合
    absX = cv.convertScaleAbs(x)
    absY = cv.convertScaleAbs(y)
    Roberts = cv.addWeighted(absX, 0.5, absY, 0.5, 0)
    # 显示图形
    titles = ['原始图像', 'Roberts算子']
    images = [rgb_img, Roberts]
    for i in range(2):
        plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])
    plt.show()


注意:在进行了 Roberts 算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示,然后才能进行图像融合



Prewitt算子


Prewitt 算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用。


由于 Prewitt 算子采用 3 3 模板对区域内的像素值进行计算,而 Robert 算子的模板为 2 2 ,故 Prewitt 算子的边缘检测结果在水平方向和垂直方向均比 Robert 算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像。


Prewitt 算子的模版如下:

c5ddc5485db548c9afadea246332dd84.png


在代码实现上, Prewitt 算子的实现过程与 Roberts 算子比较相似


import cv2 as cv
    import numpy as np
    import matplotlib.pyplot as plt
    # 读取图像
    img = cv.imread('data.jpg', cv.COLOR_BGR2GRAY)
    rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
    # 灰度化处理图像
    grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    # Prewitt 算子
    kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]],dtype=int)
    kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]],dtype=int)
    x = cv.filter2D(grayImage, cv.CV_16S, kernelx)
    y = cv.filter2D(grayImage, cv.CV_16S, kernely)
    # 转 uint8 ,图像融合
    absX = cv.convertScaleAbs(x)
    absY = cv.convertScaleAbs(y)
    Prewitt = cv.addWeighted(absX, 0.5, absY, 0.5, 0)
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # 显示图形
    titles = ['原始图像', 'Prewitt 算子']
    images = [rgb_img, Prewitt]
    for i in range(2):
        plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])
    plt.show()

f1082984804943a096b8a080b4846760.png

从结果上来看, Prewitt 算子图像锐化提取的边缘轮廓,其效果图的边缘检测结果比 Robert 算子更加明显。


Sobel算子


Sobel 算子的中文名称是索贝尔算子,是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。


Sobel 算子在 Prewitt 算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓。


算法模版如下:

4547185d37fd413eb4081bf12e289c5e.png

Sobel 算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息。因为 Sobel 算子结合了高斯平滑和微分求导(分化),因此结果会具有更多的抗噪性,当对精度要求不是很高时, Sobel 算子是一种较为常用的边缘检测方法。


Sobel 算子近似梯度的大小的计算公式如下:

fa4e1bdb252f4a38988e3af459329291.png

梯度方向的计算公式如下:

4bdbc682eb5a468490e3cc3501724d95.png

如果以上的角度 θ 等于零,即代表图像该处拥有纵向边缘,左方较右方暗。


在 Python 中,为我们提供了 Sobel() 函数进行运算,整体处理过程和前面的类似,代码如下:


import cv2 as cv
    import matplotlib.pyplot as plt
    # 读取图像
    img = cv.imread('data.jpg', cv.COLOR_BGR2GRAY)
    rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
    # 灰度化处理图像
    grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    # Sobel 算子
    x = cv.Sobel(grayImage, cv.CV_16S, 1, 0)
    y = cv.Sobel(grayImage, cv.CV_16S, 0, 1)
    # 转 uint8 ,图像融合
    absX = cv.convertScaleAbs(x)
    absY = cv.convertScaleAbs(y)
    Sobel = cv.addWeighted(absX, 0.5, absY, 0.5, 0)
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # 显示图形
    titles = ['原始图像', 'Sobel 算子']
    images = [rgb_img, Sobel]
    for i in range(2):
        plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])
    plt.show()


206996b1db73470ebbcb42be8e0f10e8.png

Laplacian算子


拉普拉斯( Laplacian )算子是 n 维欧几里德空间中的一个二阶微分算子,常用于图像增强领域和边缘提取。

Laplacian 算子的核心思想:判断图像中心像素灰度值与它周围其他像素的灰度值,如果中心像素的灰度更高,则提升中心像素的灰度;反之降低中心像素的灰度,从而实现图像锐化操作。


在实现过程中, Laplacian 算子通过对邻域中心像素的四方向或八方向求梯度,再将梯度相加起来判断中心像素灰度与邻域内其他像素灰度的关系,最后通过梯度运算的结果对像素灰度进行调整。


Laplacian 算子分为四邻域和八邻域,四邻域是对邻域中心像素的四方向求梯度,八邻域是对八方向求梯度。


四邻域模板如下:

f282f4e8741d4fdb9ef078ec3ba37477.png

八邻域模板如下:

e51cdde1ecbc4c5a93e51eef6f0b6036.png

通过模板可以发现,当邻域内像素灰度相同时,模板的卷积运算结果为0;当中心像素灰度高于邻域内其他像素的平均灰度时,模板的卷积运算结果为正数;当中心像素的灰度低于邻域内其他像素的平均灰度时,模板的卷积为负数。对卷积运算的结果用适当的衰弱因子处理并加在原中心像素上,就可以实现图像的锐化处理。


在 OpenCV 中, Laplacian 算子被封装在 Laplacian() 函数中,其主要是利用Sobel算子的运算,通过加上 Sobel 算子运算出的图像 x 方向和 y 方向上的导数,得到输入图像的图像锐化结果。


import cv2 as cv
    import matplotlib.pyplot as plt
    # 读取图像
    img = cv.imread('data.jpg', cv.COLOR_BGR2GRAY)
    rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
    # 灰度化处理图像
    grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    # Laplacian
    dst = cv.Laplacian(grayImage, cv.CV_16S, ksize = 3)
    Laplacian = cv.convertScaleAbs(dst)
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # 显示图形
    titles = ['原始图像', 'Laplacian 算子']
    images = [rgb_img, Laplacian]
    for i in range(2):
        plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])
    plt.show()


c0a94325f19449af9752721ba3c2cc07.png

相关文章
|
3月前
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
149 7
|
4月前
|
计算机视觉 Windows Python
windows下使用python + opencv读取含有中文路径的图片 和 把图片数据保存到含有中文的路径下
在Windows系统中,直接使用`cv2.imread()`和`cv2.imwrite()`处理含中文路径的图像文件时会遇到问题。读取时会返回空数据,保存时则无法正确保存至目标目录。为解决这些问题,可以使用`cv2.imdecode()`结合`np.fromfile()`来读取图像,并使用`cv2.imencode()`结合`tofile()`方法来保存图像至含中文的路径。这种方法有效避免了路径编码问题,确保图像处理流程顺畅进行。
439 1
|
1月前
|
计算机视觉 开发者 Python
利用Python进行简单的图像处理
【10月更文挑战第36天】本文将引导读者理解如何使用Python编程语言和其强大的库,如PIL和OpenCV,进行图像处理。我们将从基本的图像操作开始,然后逐步深入到更复杂的技术,如滤波器和边缘检测。无论你是编程新手还是有经验的开发者,这篇文章都将为你提供新的视角和技能,让你能够更好地理解和操作图像数据。
|
2月前
|
计算机视觉 Python
python利用pyqt5和opencv打开电脑摄像头并进行拍照
本项目使用Python的PyQt5和OpenCV库实现了一个简单的摄像头应用。用户可以通过界面按钮打开或关闭摄像头,并实时预览视频流。点击“拍照”按钮可以捕捉当前画面并保存为图片文件。该应用适用于简单的图像采集和处理任务。
169 0
python利用pyqt5和opencv打开电脑摄像头并进行拍照
|
2月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
109 2
|
3月前
|
机器学习/深度学习 计算机视觉 Python
opencv环境搭建-python
本文介绍了如何在Python环境中安装OpenCV库及其相关扩展库,包括numpy和matplotlib,并提供了基础的图像读取和显示代码示例,同时强调了使用Python虚拟环境的重要性和基本操作。
|
2月前
|
算法 数据可视化 计算机视觉
Python中医学图像处理常用的库
在Python中,医学图像处理常用的库包括:ITK(及其简化版SimpleITK)、3D Slicer、Pydicom、Nibabel、MedPy、OpenCV、Pillow和Scikit-Image。这些库分别擅长图像分割、配准、处理DICOM和NIfTI格式文件、图像增强及基础图像处理等任务。选择合适的库需根据具体需求和项目要求。
105 0
|
2月前
|
数据挖掘 计算机视觉 Python
基于Python的简单图像处理技术
【10月更文挑战第4天】在数字时代,图像处理已成为不可或缺的技能。本文通过Python语言,介绍了图像处理的基本方法,包括图像读取、显示、编辑和保存。我们将一起探索如何使用PIL库进行图像操作,并通过实际代码示例加深理解。无论你是编程新手还是图像处理爱好者,这篇文章都将为你打开一扇新窗,让你看到编程与创意结合的无限可能。
WK
|
4月前
|
计算机视觉 Python
如何使用OpenCV进行基本图像处理
使用OpenCV进行基本图像处理包括安装OpenCV,读取与显示图像,转换图像颜色空间(如从BGR到RGB),调整图像大小,裁剪特定区域,旋转图像,以及应用图像滤镜如高斯模糊等效果。这些基础操作是进行更复杂图像处理任务的前提。OpenCV还支持特征检测、图像分割及对象识别等高级功能。
WK
56 4
|
4月前
|
计算机视觉 开发者 Python
使用Python进行简单图像处理
【8月更文挑战第31天】 本文将介绍如何使用Python编程语言来处理图像。我们将通过代码示例来展示如何读取、显示、编辑和保存图像文件。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供一个清晰的指引,帮助你开始自己的图像处理项目。