压缩列表(ziplist)是列表键和哈希键的底层实现之一,都是在存储元素内容较少的时候发挥作用:
- 当一个列表键只包含少量列表项,并且每个列表项要么就是小整数值,要么就是长度比较短的字符串,那么Redis就会使用压缩列表来做列表键的底层实现
- 当一个哈希键只包含少量键值对,比且每个键值对的键和值要么就是小整数值,要么就是长度比较短的字符串,那么Redis就会使用压缩列表来做哈希键的底层实现
压缩列表是Redis为了节约内存而开发的,是由一系列特殊编码的连续内存块组成的顺序型数据结构。一个压缩列表可以包含任意多个节点(entry),每个节点可以保存一个字节数组或者一个整数值
压缩列表数据结构
压缩列表包括压缩列表节点和一系列的属性组合而成。
压缩列表节点
每个压缩列表节点可以保存一个字节数组或者一个整数值,其中,字节数组可以是以下三种长度的其中一种:
- 长度小于等于63(2^6–1)字节的字节数组
- 长度小于等于16383(2^14–1)字节的字节数组
- 长度小于等于4294967295(2^32–1)字节的字节数组;
而整数值则可以是以下六种长度的其中一种:
- 4位长,介于0至12之间的无符号整数;
- 1字节长的有符号整数;
- 3字节长的有符号整数;
- int16_t类型整数;
- int32_t类型整数;
- int64_t类型整数
每个压缩列表节点都由previous_entry_length、encoding、content三个部分组成
- 节点的previous_entry_length属性以字节为单位,记录了压缩列表中前一个节点的长度。长度可以是1字节或者5字节
- 如果前一节点的长度小于254字节,那么previous_entry_length属性的长度为1字节:前一节点的长度就保存在这一个字节里面
- 如果前一节点的长度大于等于254字节,那么previous_entry_length属性的长度为5字节:其中属性的第一字节会被设置为0xFE(十进制值254),而之后的四个字节则用于保存前一节点的长度
- 节点的encoding属性记录了节点的content属性所保存数据的类型以及长度:
- 一字节、两字节或者五字节长,值的最高位为00、01或者10的是字节数组编码:这种编码表示节点的content属性保存着字节数组,数组的长度由编码除去最高两位之后的其他位记录
- 一字节长,值的最高位以11开头的是整数编码:这种编码表示节点的content属性保存着整数值,整数值的类型由编码除去最高两位之后的其他位记录
- 节点的content属性负责保存节点的值,节点值可以是一个字节数组或者整数,值的类型和长度由节点的encoding属性决定
压缩列表
压缩列表的数据结构如下:
各个属性说明如下:
- zlbytes,大小为4字节,记录整个压缩列表占用的内存字节数。
- zltail,大小为4字节,记录压缩列表表尾节点距离压缩列表起始地址有多少字节。通过这个值,压缩列表无需偏移量就能快速确定表尾节点地址。
- zllen,大小为2字节,当属性值小于65535时,记录了压缩列表包含的节点数量,当属性值等于65535时,节点数量需要遍历获取。
- entryN:压缩列表的节点,节点长度由节点保存的内容决定。
- zlend:,大小为1字节,特殊值0xFF(十进制255),用于标记压缩列表的末端。
举个例子如下:
各个属性值解释如下:
- 列表zlbytes属性的值为0xd2(十进制210),表示压缩列表的总长为210字节,O(1)
- 列表zltail属性的值为0xb3(十进制179),这表示如果我们有一个指向压缩列表起始地址的指针p,那么只要用指针p加上偏移量179,就可以计算出表尾节点entry5的地址,O(1)
- 列表zllen属性的值为0x5(十进制5),表示压缩列表包含五个节点,O(1)
压缩列表有些特性和需要注意的地方
倒序回溯
因为节点的previous_entry_length属性记录了前一个节点的长度,所以程序可以通过指针运算,根据当前节点的起始地址来计算出前一个节点的起始地址,压缩列表的从表尾向表头遍历操作就是使用这一原理实现的
连锁更新
在一个压缩列表中,有多个连续的、长度介于250字节到253字节之间的节点e1至eN,因为e1至eN的所有节点的长度都小于254字节,所以记录这些节点的长度只需要1字节长的previous_entry_length属性,换句话说,e1至eN的所有节点的previous_entry_length属性都是1字节长的。
- 如果我们将一个长度大于等于254字节的新节点new设置为压缩列表的表头节点,那么new将成为e1的前置节点
- 因为e1的previous_entry_length属性仅长1字节,它没办法保存新节点new的长度,所以程序将对压缩列表执行空间重分配操作,并将e1节点的previous_entry_length属性从原来的1字节长扩展为5字节长
- 而接下来引发了一系列的重新分配空间的内存重分配
展示如下:
当然删除一个小节点也会有同样的问题:如果e1至eN都是大小介于250字节至253字节的节点,big节点的长度大于等于254字节(需要5字节的previous_entry_length来保存),而small节点的长度小于254字节(只需要1字节的previous_entry_length来保存):
那么当我们将small节点从压缩列表中删除之后,为了让e1的previous_entry_length属性可以记录big节点的长度,程序将扩展e1的空间,并由此引发之后的连锁更新
因为连锁更新在最坏情况下需要对压缩列表执行N次空间重分配操作,而每次空间重分配的最坏复杂度为O(N),所以连锁更新的最坏复杂度为O(N^2)
要注意的是,尽管连锁更新的复杂度较高,但它真正造成性能问题的几率是很低的
- 首先,压缩列表里要恰好有多个连续的、长度介于250字节至253字节之间的节点,连锁更新才有可能被引发,在实际中,这种情况并不多见
- 其次,即使出现连锁更新,但只要被更新的节点数量不多,就不会对性能造成任何影响:比如说,对三五个节点进行连锁更新是绝对不会影响性能的
因为以上原因,ziplistPush等命令的平均复杂度仅为O(N)
压缩列表API
压缩列表有如下常用API: