【Redis基础知识 十】Redis底层数据编码之压缩列表

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 【Redis基础知识 十】Redis底层数据编码之压缩列表

压缩列表(ziplist)是列表键和哈希键的底层实现之一,都是在存储元素内容较少的时候发挥作用:

  • 当一个列表键只包含少量列表项,并且每个列表项要么就是小整数值,要么就是长度比较短的字符串,那么Redis就会使用压缩列表来做列表键的底层实现
  • 当一个哈希键只包含少量键值对,比且每个键值对的键和值要么就是小整数值,要么就是长度比较短的字符串,那么Redis就会使用压缩列表来做哈希键的底层实现

压缩列表是Redis为了节约内存而开发的,是由一系列特殊编码的连续内存块组成的顺序型数据结构。一个压缩列表可以包含任意多个节点(entry),每个节点可以保存一个字节数组或者一个整数值

压缩列表数据结构

压缩列表包括压缩列表节点和一系列的属性组合而成。

压缩列表节点

每个压缩列表节点可以保存一个字节数组或者一个整数值,其中,字节数组可以是以下三种长度的其中一种:

  • 长度小于等于63(2^6–1)字节的字节数组
  • 长度小于等于16383(2^14–1)字节的字节数组
  • 长度小于等于4294967295(2^32–1)字节的字节数组;

而整数值则可以是以下六种长度的其中一种:

  • 4位长,介于0至12之间的无符号整数;
  • 1字节长的有符号整数;
  • 3字节长的有符号整数;
  • int16_t类型整数;
  • int32_t类型整数;
  • int64_t类型整数

每个压缩列表节点都由previous_entry_length、encoding、content三个部分组成

  • 节点的previous_entry_length属性以字节为单位,记录了压缩列表中前一个节点的长度。长度可以是1字节或者5字节
  • 如果前一节点的长度小于254字节,那么previous_entry_length属性的长度为1字节:前一节点的长度就保存在这一个字节里面
  • 如果前一节点的长度大于等于254字节,那么previous_entry_length属性的长度为5字节:其中属性的第一字节会被设置为0xFE(十进制值254),而之后的四个字节则用于保存前一节点的长度
  • 节点的encoding属性记录了节点的content属性所保存数据的类型以及长度
  • 一字节、两字节或者五字节长,值的最高位为00、01或者10的是字节数组编码:这种编码表示节点的content属性保存着字节数组,数组的长度由编码除去最高两位之后的其他位记录

  • 一字节长,值的最高位以11开头的是整数编码:这种编码表示节点的content属性保存着整数值,整数值的类型由编码除去最高两位之后的其他位记录

  • 节点的content属性负责保存节点的值,节点值可以是一个字节数组或者整数,值的类型和长度由节点的encoding属性决定

压缩列表

压缩列表的数据结构如下:

各个属性说明如下:

  • zlbytes,大小为4字节,记录整个压缩列表占用的内存字节数
  • zltail,大小为4字节,记录压缩列表表尾节点距离压缩列表起始地址有多少字节。通过这个值,压缩列表无需偏移量就能快速确定表尾节点地址。
  • zllen,大小为2字节,当属性值小于65535时,记录了压缩列表包含的节点数量,当属性值等于65535时,节点数量需要遍历获取。
  • entryN:压缩列表的节点,节点长度由节点保存的内容决定。
  • zlend:,大小为1字节,特殊值0xFF(十进制255),用于标记压缩列表的末端

举个例子如下:

各个属性值解释如下:

  • 列表zlbytes属性的值为0xd2(十进制210),表示压缩列表的总长为210字节,O(1)
  • 列表zltail属性的值为0xb3(十进制179),这表示如果我们有一个指向压缩列表起始地址的指针p,那么只要用指针p加上偏移量179,就可以计算出表尾节点entry5的地址,O(1)
  • 列表zllen属性的值为0x5(十进制5),表示压缩列表包含五个节点,O(1)

压缩列表有些特性和需要注意的地方

倒序回溯

因为节点的previous_entry_length属性记录了前一个节点的长度,所以程序可以通过指针运算,根据当前节点的起始地址来计算出前一个节点的起始地址,压缩列表的从表尾向表头遍历操作就是使用这一原理实现的

连锁更新

在一个压缩列表中,有多个连续的、长度介于250字节到253字节之间的节点e1至eN,因为e1至eN的所有节点的长度都小于254字节,所以记录这些节点的长度只需要1字节长的previous_entry_length属性,换句话说,e1至eN的所有节点的previous_entry_length属性都是1字节长的。

  1. 如果我们将一个长度大于等于254字节的新节点new设置为压缩列表的表头节点,那么new将成为e1的前置节点
  2. 因为e1的previous_entry_length属性仅长1字节,它没办法保存新节点new的长度,所以程序将对压缩列表执行空间重分配操作,并将e1节点的previous_entry_length属性从原来的1字节长扩展为5字节长
  3. 而接下来引发了一系列的重新分配空间的内存重分配

展示如下:

当然删除一个小节点也会有同样的问题:如果e1至eN都是大小介于250字节至253字节的节点,big节点的长度大于等于254字节(需要5字节的previous_entry_length来保存),而small节点的长度小于254字节(只需要1字节的previous_entry_length来保存):

那么当我们将small节点从压缩列表中删除之后,为了让e1的previous_entry_length属性可以记录big节点的长度,程序将扩展e1的空间,并由此引发之后的连锁更新

因为连锁更新在最坏情况下需要对压缩列表执行N次空间重分配操作,而每次空间重分配的最坏复杂度为O(N),所以连锁更新的最坏复杂度为O(N^2)

要注意的是,尽管连锁更新的复杂度较高,但它真正造成性能问题的几率是很低的

  • 首先,压缩列表里要恰好有多个连续的、长度介于250字节至253字节之间的节点,连锁更新才有可能被引发,在实际中,这种情况并不多见
  • 其次,即使出现连锁更新,但只要被更新的节点数量不多,就不会对性能造成任何影响:比如说,对三五个节点进行连锁更新是绝对不会影响性能的

因为以上原因,ziplistPush等命令的平均复杂度仅为O(N)

压缩列表API

压缩列表有如下常用API:

相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
5月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
319 67
|
4月前
|
存储 缓存 NoSQL
告别数据僵尸!Redis实现自动清理过期键值对
在数据激增的时代,Redis如同内存管理的智能管家,支持键值对的自动过期功能,实现“数据保鲜”。通过`EXPIRE`设定生命倒计时、`TTL`查询剩余时间,结合惰性删除与定期清理策略,Redis高效维护内存秩序。本文以Python实战演示其过期机制,并提供最佳实践指南,助你掌握数据生命周期管理的艺术,让数据优雅退场。
270 0
|
7月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
|
7月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
7月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
|
7月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
1. 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断 a. 如果未过期,返回数据 b. 发现已过期,删除,返回nil 2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。默认情况下 Redis 定期检查的频率是每秒扫描 10 次,用于定期清除过期键。当然此值还可以通过配置文件进行设置,在 redis.conf 中修改配置“hz”
|
存储 NoSQL Redis
redis存储原理和数据模型
redis存储原理和数据模型
133 1
|
存储 NoSQL Redis
Redis存储原理与数据模型
Redis存储原理与数据模型
|
存储 缓存 NoSQL
为什么要在 Redis 中存储两次同一份数据?
为什么要在 Redis 中存储两次同一份数据?
145 0
为什么要在 Redis 中存储两次同一份数据?

热门文章

最新文章