【收藏】5W+条海内外网络数据分析得出首份《顶级数据团队建设全景报告》,直击数据团队建设现状及问题

简介: 7月11日,云栖社区技术联盟伙伴——大数据文摘联合清华数据科学研究院重磅发布首份《顶级数据团队建设全景报告》,《报告》发现,目前,尽管部分组织的决策者已经具备了数据驱动意识,但数据价值真正落地仍然艰难。
我的公司是否需要独立的数据团队? 我该何时、怎么样建设自己的数据团队? 数据团队的价值如何衡量? 针对这些业内普遍存在的数据团队建设问题,7月11日,云栖社区技术联盟伙伴——大数据文摘联合清华数据科学研究院重磅发布首份《顶级数据团队建设全景报告》(下称《报告》)。

历时3个月的调研,《报告》囊括50,000+条海内外网络数据分析、1,000+份调查问卷内容,和10位海内外业界大咖深度访谈内容,针对“数据团队建设现状”和“数据团队建设要素”两大内容,致力于回答数据团队建设现状和数据团队发展问题,力求为行业内数据团队的组建和高校数据人才的培养提供指导性意见。 

《报告》发现,目前,尽管部分组织的决策者已经具备了数据驱动意识,但数据价值真正落地仍然艰难。只有某些信息化程度高的行业,如互联网、金融等,配备有完整的数据团队,多数信息化程度偏低的行业仍然处于数据团队建设的初级阶段,数据团队“做什么”、“怎么做”等问题仍不清晰。  

在工作内容方面,现阶段的数据团队除了要承担数据驱动决策、数据驱动业务的工作外,往往还承担着产品优化、技术研发等工作。建设目标不清晰、业务界限模糊、人才缺乏等问题是这些团队面临的普遍困扰,在被调研的多数组织或机构中,数据团队做出的决策无法充分、高效实现。一定程度上反映出数据团队和业务部门的脱节。 但是长远来看,数据团队依然具有非常广阔的发展前景,业内数据人才需求巨大。 

行业间数据团队建设存在差异:互联网金融行业领跑
现阶段,拥有数据团队比例最高的是前期信息化程度较好的金融业和IT行业,领跑数据团队建设军备竞赛。其中,金融业数据业务外包比例最高,多采用“外包+内生”模式;IT行业的数据团队结构较为集中,拥有独立数据团队的比例最大,而且使用数据外包服务相对较少。 交通运输、医疗健康、公共管理、能源和科教行业处于赛道中端,而住宿餐饮和农业在数据团队建设上仍处于起步或准备阶段。


数据团队建设困境:价值落地艰难、业务团队缺乏合作动力
尽管数据团队在一些行业中发展态势良好,但仍然存在着价值落地艰难、业务团队缺乏合作动力、数据人才存在缺口等困境。

数据团队并不直接产生价值,其价值落地多通过与业务团队有效合作产生。因此,业务团队对数据团队的工作是否满意、有多大合作动力,在很大程度上影响着数据团队的工作效率。

问卷调研结果显示,近40%受访者对数据团队的满意度一般,近26%受访者对数据团队“不满意”或“非常不满意”。
8628dd84649ba632abd2c245da1944f6b4f79ff6
您对所在机构数据团队的满意程度

近80%受访者认为数据团队对自己所在的机构重要或者非常重要。数据团队的价值普遍受到认可。但是,超过40%受访者无法量化数据团队产生的直接价值。
14086413380b4c789ba9c70d3b0e936b65660390
数据为您所在机构带来多大直接价值

行业内数据人才存在较大缺口
专业团队的建设需要实行持久性、针对性的人才储备与培养,优化人才层次和结构,保证团队的正常运转以及长期稳定发展。目前数据团队的人才储备普遍存在较大缺口。数据团队通常需要具备多项能力的复合型人才,数据人才培养周期长、成效慢。

问卷调研结果显示:目前超过50%组织或机构的数据团队人才储备不充足,数据团队普遍存在人才缺口。
7308eeee998cd1451a6c4ce90f4703bd5101b28a
数据团队人才储备状况


数据人才投资
数据团队的组建需要寻找到合适的数据人才。组织或机构在组建数据团队时往往有一个固定的人员预算,因此,在有限的团队预算下,寻找到具备能够满足需求能力的团队成员,就成为团队领导者面临的首要问题之一。

各数据岗位中,自然语言处理工程师、数据科学家、机器学习工程师、算法工程师薪资水平最高,月工资中位数均在2万元人民币以上。

039e17f65f4413343e70c2f909779f0d9fe10aa0
各职位月薪/人民币
7f95416ed00e01bbb7a3ee6b768f8574480df267
各职位招聘的学历要求和对应月薪/人民币


组建高效数据团队
顶级数据团队一般具有相似的特征:所在组织或机构数据驱动战略明确,数据团队运作高效。高层需要设置清晰的数据团队建设目标并将数据纳入决策流程;数据团队的高效运作则需要优秀的团队领导、合理的组织架构和多样化的人才。

1、高层重视

“一个公司能否有领先市场的发展,决策者的眼界非常重要,高管对数据是否敏感,能否下决心把数据推动做好,决定了这个公司的前景和竞争力。”
——LinkedIn用户增长部门数据科学团队负责人 周洋
2、嵌入式工作
“我希望团队在满足业务增长需要的前提下,能保持一个扁平的架构。我会鼓励自己的团队成员与业务部门尽可能多的泡在一起,争取嵌入式的工作,主动研究业务,寻求数据驱动的机会。”
——猎聘首席数据官 单艺
3、Quick Wins

“我鼓励数据团队一旦有了新想法,便去说服同伴,组成2-3人的小团队把这个想法实现出来。再自下而上扩展影响圈,不断完善想法,直至一个新数据应用场景的出现,变成产品。”      
——【友盟+】首席数据官 李丹枫

附件下载:

《顶级数据团队建设全景报告》目录:
89cf3c50841010d4110ea9d0d93efca7dd10ea79
报告来源:大数据文摘微信公众号
目录
相关文章
|
12天前
|
JavaScript 算法 前端开发
采招网JS逆向:基于AES解密网络数据
采招网JS逆向:基于AES解密网络数据
29 0
|
13天前
|
数据采集 DataWorks 数据挖掘
提升数据分析效率:DataWorks在企业级数据治理中的应用
【8月更文第25天】本文将探讨阿里巴巴云的DataWorks平台如何通过建立统一的数据标准、规范以及实现数据质量监控和元数据管理来提高企业的数据分析效率。我们将通过具体的案例研究和技术实践来展示DataWorks如何简化数据处理流程,减少成本,并加速业务决策。
137 54
|
2天前
|
存储 安全 网络安全
云计算与网络安全:如何保护您的数据在云端
【9月更文挑战第4天】在数字化时代,云计算已成为企业和个人存储和处理数据的首选方式。然而,随着云服务的普及,网络安全问题也日益凸显。本文将探讨云计算的基本原理,网络安全的重要性,以及如何在使用云服务时保护数据安全。我们将从云服务的基本概念出发,深入讨论网络安全的关键技术,最后提供一些实用的建议,帮助您在使用云服务时确保数据安全。
20 6
|
11天前
|
数据采集 存储 机器学习/深度学习
豆瓣评分7.6!Python大牛教你如何采集网络数据
网络数据采集大有所为。在大数据深入人心的时代,网络数据采集作为网络、数据库与机器学习等领域的交汇点,已经成为满足个性化网络数据需求的最佳实践。你在浏览器上看到的内容,大部分都可以通过编写Python 程序来获取。如果你可以通过程序获取数据,那么就可以把数据存储到数据库里。如果你可以把数据存储到数据库里,自然也就可以将这些数据可视化。 今天给小伙伴们分享的这份手册采用简洁强大的Python语言,介绍了网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导。
|
10天前
|
存储 安全 网络安全
云计算与网络安全:保护云端数据的关键技术
【8月更文挑战第28天】在数字化时代,云计算服务成为企业和个人存储、处理数据的首选。然而,随之而来的网络安全挑战也日益严峻。本文将深入探讨如何通过先进的网络安全技术来保护云服务中的数据安全。我们将从基础的云服务模型开始,逐步深入到网络安全的核心策略和最佳实践,旨在为读者提供一套完整的解决方案,确保他们的数据在云端得到充分的保护。
|
10天前
|
安全 网络安全 数据安全/隐私保护
云原生技术探索:容器化与微服务架构的实践之路网络安全与信息安全:保护数据的关键策略
【8月更文挑战第28天】本文将深入探讨云原生技术的核心概念,包括容器化和微服务架构。我们将通过实际案例和代码示例,展示如何在云平台上实现高效的应用部署和管理。文章不仅提供理论知识,还包含实操指南,帮助开发者理解并应用这些前沿技术。 【8月更文挑战第28天】在数字化时代,网络安全和信息安全是保护个人和企业数据的前线防御。本文将探讨网络安全漏洞的成因、加密技术的应用以及提升安全意识的重要性。文章旨在通过分析网络安全的薄弱环节,介绍如何利用加密技术和提高用户警觉性来构建更为坚固的数据保护屏障。
|
11天前
|
存储 安全 网络安全
云计算与网络安全的博弈:保护数据在虚拟世界中的安全移动应用开发之旅:从新手到专家
【8月更文挑战第27天】随着云计算技术的飞速发展,企业和个人用户越来越多地将数据和服务迁移到云端。然而,这一转变同时带来了新的安全挑战。本文旨在探讨云计算环境下的网络安全问题,并分析如何通过技术和策略保障信息安全。我们将从云服务的基础知识出发,逐步深入到网络安全和信息安全的高级概念,最后讨论如何实施有效的安全措施来抵御网络威胁。文章不仅涵盖了理论框架,还提供了实际案例分析,旨在为读者提供一套全面的云计算安全指南。
|
15天前
|
监控 网络协议 Linux
在Linux中,如何实时抓取并显示当前系统中tcp 80 端口的网络数据信息?
在Linux中,如何实时抓取并显示当前系统中tcp 80 端口的网络数据信息?
|
16天前
|
存储 数据挖掘 数据处理
DataFrame探索之旅:如何一眼洞察数据本质,提升你的数据分析能力?
【8月更文挑战第22天】本文通过电商用户订单数据的案例,展示了如何使用Python的pandas库查看DataFrame信息。首先导入数据并使用`head()`, `columns`, `shape`, `describe()`, 和 `dtypes` 方法来快速概览数据的基本特征。接着,通过对数据进行分组操作计算每位顾客的平均订单金额,以此展示初步数据分析的过程。掌握这些技能对于高效的数据分析至关重要。
26 2
|
16天前
|
SQL 安全 网络安全
网络安全与信息安全:保护数据的关键策略
【8月更文挑战第22天】在数字化时代,网络安全和信息安全是维护个人隐私、企业机密和国家安全的基石。本文将探讨网络安全漏洞的常见形式、加密技术的重要性以及提升安全意识的途径,旨在为读者提供一套全面的策略,以识别和防范潜在的网络威胁。我们将从基础概念出发,逐步深入到实际应用,帮助读者构建一个更安全的网络环境。
下一篇
DDNS