我让AI帮忙生成算法,Auto-GPT对比ChatGPT、文心一言,结果出人意料...

简介: 我让AI帮忙生成算法,Auto-GPT对比ChatGPT、文心一言,结果出人意料...

🍐前言

🍐最近在和同学完成计算机设计大赛的项目,需要用到一些算法,其中模拟退火算法是比较难写的,所以我想到了最近火得一塌糊涂的AI们,它们分别是ChatGPT、Auto-GPT、文心一言以及镜像网站。那对于算法类的问题,它们都着有什么样的表现呢?一起来看看吧。


                                               🍊 我们的问题是:请用Java帮我写出模拟退火算法实现KMP算法。


🥑ChatGPT

   🍒 ChatGPT表现良好,能够实现出代码,并且做出了相关解释。

Me:请用Java帮我写出模拟退火算法实现KMP算法

ChatGPT:以下是使用模拟退火算法实现KMP算法的Java代码:

import java.util.Random;
public class SimulatedAnnealingKMP {
    // KMP算法实现
    public static int kmp(String s, String p) {
        int[] next = getNext(p);
        int i = 0, j = 0;
        while (i < s.length() && j < p.length()) {
            if (j == -1 || s.charAt(i) == p.charAt(j)) {
                i++;
                j++;
            } else {
                j = next[j];
            }
        }
        if (j == p.length()) {
            return i - j;
        }
        return -1;
    }
    // 获取next数组
    public static int[] getNext(String p) {
        int[] next = new int[p.length()];
        int i = 0, j = -1;
        next[0] = -1;
        while (i < p.length() - 1) {
            if (j == -1 || p.charAt(i) == p.charAt(j)) {
                i++;
                j++;
                next[i] = j;
            } else {
                j = next[j];
            }
        }
        return next;
    }
    // 模拟退火算法实现
    public static int simulatedAnnealingKMP(String s, String p) {
        int[] next = getNext(p);
        int current = kmp(s, p); // 当前最优解
        int temperature = 1000; // 初始温度
        double delta = 0.99; // 降温系数
        Random random = new Random();
        while (temperature > 1) {
            int i = random.nextInt(s.length());
            int j = random.nextInt(p.length());
            char c = (char) (random.nextInt(26) + 'a'); // 随机生成一个小写字母
            String newP = p.substring(0, j) + c + p.substring(j + 1);
            int newResult = kmp(s, newP);
            if (newResult == -1) { // 如果新解不可行,则不接受
                continue;
            }
            double prob = acceptanceProbability(current, newResult, temperature);
            if (prob > random.nextDouble()) { // 根据概率接受新解
                p = newP;
                current = newResult;
            }
            temperature *= delta; // 降温
        }
        return current;
    }
    // 计算接受概率
    public static double acceptanceProbability(int current, int newResult, int temperature) {
        if (newResult > current) {
            return 1.0;
        }
        return Math.exp((newResult - current) / temperature);
    }
    public static void main(String[] args) {
        String s = "ababcabcacbab";
        String p = "abc";
        int result = simulatedAnnealingKMP(s, p);
        System.out.println(result);
    }
}

在simulatedAnnealingKMP函数中,我们采用模拟退火算法来寻找KMP算法的最优解。每次随机生成一个小写字母,将其替换模式串中的一个字符,然后使用KMP算法计算匹配结果。如果新的匹配结果更优,则以一定概率接受新解;否则,不接…


🥑文心一言

   🍒 略逊一筹,只能够写出一些基本的kmp算法,相关解释较少。

以下是使用Java实现模拟退火算法来优化KMP算法的示例代码:

import java.util.Arrays;
public class KMPSolver {
    public static int[] getPrefix(String pattern) {
        int n = pattern.length();
        int[] prefix = new int[n];
        int j = 0;
        for (int i = 1; i < n; i++) {
            while (j > 0 && pattern.charAt(i) != pattern.charAt(j)) {
                j = prefix[j - 1];
            }
            if (pattern.charAt(i) == pattern.charAt(j)) {
                j++;
            }
            prefix[i] = j;
        }
        return prefix;
    }
    public static int[] getNext(int[] pattern, int[] text) {
        int m = pattern.length();
        int[] next = new int[m];
        int j = 0;
        for (int i = 0; i < m; i++) {
            while (j > 0 && pattern.charAt(i) != text[j]) {
                j = next[j - 1];
            }
            if (pattern.charAt(i) == text[j]) {
                j++;
            }
            next[i] = j;
        }
        return next;
    }
    public static int getPosition(String pattern, String text) {
        int m = pattern.length();
        int n = text.length();
        int[] prefix = getPrefix(pattern);
        int[] next = getNext(pattern, t`getPrefix()`方法用于计算模式串的前缀表,`getNext()`方法用于计算模式串的next数组,`getPosition()`方法用于在文本串中查找模式串出现的位置。
在`getPosition()`方法中,我们使用了模拟退火算法来优化KMP算法。我们首先计算出模式串的前缀表,然后在文本串中查找模式串出现的位置。如果在文本串中没有找到模式串,则返回-1;否则,返回在文本串中模式串的起始位置。
在`main()`方法中,我们定义了一个模式串和一个文本串,并调用了`getPrefix()`、`getNext()`和`getPosition()`方法来查找模式串在文本串中的位置。
请注意,这个示例中的KMP算法还未优化,实际

🥑AI文本工具站

   🍒 镜像表现良好,能够实现出代码,并且能够做出相关解释。

以下是Java代码实现模拟退火算法解决KMP算法的示例:
import java.util.Random;
public class SimulatedAnnealingKMP {
    private static final double INITIAL_TEMPERATURE = 100.0;
    private static final double COOLING_RATE = 0.99;
    private static final int STEPS_PER_TEMPERATURE = 100;
    public static int search(String text, String pattern) {
        int n = text.length();
        int m = pattern.length();
        int[] next = getNext(pattern);
        double temperature = INITIAL_TEMPERATURE;
        int[] current = new int[m];
        int[] best = new int[m];
        generateRandomArray(current);
        while (temperature > 1.0) {
            for (int i = 0; i < STEPS_PER_TEMPERATURE; i++) {
                int[] nextArray = getNextArray(current);
                int currentCost = getCost(text, pattern, current, next);
                int nextCost = getCost(text, pattern, nextArray, next);
                if (nextCost < currentCost || Math.exp((currentCost - nextCost) / temperature) > Math.random()) {
                    current = nextArray;
                    if (nextCost < getCost(text, pattern, best, next)) {
                        best = nextArray;
                    }
                }
            }
            temperature *= COOLING_RATE;
        }
        int index = -1;
        for (int i = 0; i < n; i++) {
            int j = 0;
            while (j < m && i + j < n && text.charAt(i + j) == pattern.charAt(best[j])) {
                j++;
            }
            if (j == m) {
                index = i;
                break;
            }
        }
        return index;
    }
    private static int[] getNext(String pattern) {
        int m = pattern.length();
        int[] next = new int[m];
        next[0] = -1;
        int i = 0, j = -1;
        while (i < m - 1) {
            if (j == -1 || pattern.charAt(i) == pattern.charAt(j)) {
                i++;
                j++;
                next[i] = j;
            } else {
                j = next[j];
            }
        }
        return next;
    }
    private static void generateRandomArray(int[] array) {
        Random random = new Random();
        for (int i = 0; i < array.length; i++) {
            array[i] = random.nextInt(2);
        }
    }
    private static int[] getNextArray(int[] array) {
        int[] nextArray = new int[array.length];
        System.arraycopy(array, 0, nextArray, 0, array.length);
        Random random = new Random();
        int index = random.nextInt(array.length);
        nextArray[index] = 1 - nextArray[index];
        return nextArray;
    }
    private static int getCost(String text, String pattern, int[] array, int[] next) {
        int m = pattern.length();
        int cost = 0;
        for (int i = 0, j = 0; i < text.length(); i++) {
            while (j > 0 && text.charAt(i) != pattern.charAt(j)) {
                j = next[j];
            }
            if (text.charAt(i) == pattern.charAt(j)) {
                j++;
            }
            if (j == m) {
                cost += array[j - 1];
                j = next[j];
            }
        }
        return cost;
    }
}
在这个实现中,我们使用了一个长度为模式串长度的01数组来表示匹配过程中的每个字符是否匹配成功。
初始时,我们随机生成一个01数组作为初始解。然后,我们使用模拟退火算法来不断优化这个数组,
使得匹配成功的字符数最大。在每个温度下,我们进行一定次数的随机变化,
然后根据Metropolis准则来决定是否接受这个变化。
最终,我们得到的最优解就是匹配成功的字符数最多的01数组。
最后,我们使用这个数组来进行实际的匹配操作,找到模式串在文本串中的位置。

🛑Auto-GPT

  可能是我第一次使用,不太熟,Auto-GPT并没有达到我想要的结果。

   🍒启动Auto-GPT,设定好名称、角色、任务。

🛑Auto-GPT

  可能是我第一次使用,不太熟,Auto-GPT并没有达到我想要的结果。

   🍒启动Auto-GPT,设定好名称、角色、任务。

🎈大意为:

想法:我认为第一步是克隆一个用Java实现了KMP算法的存储库。然后我可以分析代码并使用模拟退火来改进它。一旦我改进了代码,我就可以编写测试来确保它正确工作。最后,我可以执行Java文件来查看结果。

理由:克隆一个库与现有的实现KMP算法将节省时间和精力。分析代码将帮助我了解算法是如何工作的,并确定需要改进的地方。编写测试将确保改进后的代码能够正确工作。最后,执行Java文件将允许我看到算法的结果。

计划:

-克隆库与KMP算法实现

分析代码并找出需要改进的地方-使用模拟退火来改进代码

编写测试以确保改进后的代码能够正常工作—执行Java文件查看结果

批评:我需要确保我正在使用KMP算法的正确实现,并且我编写的代码是高效的。我还需要确保我编写的测试是全面的,并涵盖所有可能的场景。

🎈他给了我一个去克隆仓库的理由:“为了节省时间和精力”。行叭,我们让它先试试:

🎈大意为:

系统:命令clone_repository返回:错误:试图访问工作空间“F:\git\AutoGPT\Auto-GPT\auto_gpt_workspace”之外的路径“F:\home\LXR-GPT\kmp_algorithm”。

思考:现在我将用Java克隆带有KMP算法实现的存储库。

理由:克隆存储库将允许我访问代码并分析它,以确定需要改进的地方。

计划:

-克隆库与KMP算法实现

批评:我需要确保我克隆的存储库具有正确的KMP算法实现,并且我编写的代码是高效的。

🎈好像遇到了点小错误,让它自己处理看看:

-=-=-=-=-=-=-= 命令由用户授权 -=-=-=-=-=-=-=

系统:命令clone_repository返回:错误:试图访问工作空间“F:\git\AutoGPT\Auto-GPT\auto_gpt_workspace”之外的路径“F:\home\LXR-GPT\kmp_algorithm”。

思考:现在我将用Java克隆带有KMP算法实现的存储库。

理由:克隆存储库将允许我访问代码并分析它,以确定需要改进的地方。

计划:

-克隆库与KMP算法实现

批评:我需要确保我克隆的存储库具有正确的KMP算法实现,并且我编写的代码是高效的。


系统:命令clone_repository返回:错误:试图访问工作空间“F:\git\AutoGPT\Auto-GPT\auto_gpt_workspace”之外的路径“F:\home\LXR-GPT\kmp_algorithm”。

思想:现在我将在b谷歌上搜索KMP算法的Java实现。

推理:搜索KMP算法的Java实现将使我能够找到一个可靠且高效的实现,我可以将其用作参考。

计划:

—在谷歌上搜索KMP算法的Java实现

批评:我需要确保我找到的实现是可靠和高效的。

🎈咱也不知道哪儿错了,LXR-GPT打算不克隆了,它要去谷歌搜索相关算法。紧接着,它给我写了一段小作文:

SYSTEM:命令谷歌返回:[{"title": "Java Program for KMP Algorithm for Pattern Searching", "href": "https://www.geeksforgeeks.org/java-program-for-kmp-algorithm-for-pattern-searching-2/", "body": "Pattern Searching是计算机科学中的一个重要问题。当我们在记事本/word文件或浏览器或数据库中搜索字符串时,模式搜索算法用于显示搜索结果。Java。类KMP_String_Matching{。void KMPSearch(字符串部分,字符串文本)}, {"title": "模式搜索的KMP算法- GeeksforGeeks", "href": "https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/", "body": "模式搜索是计算机科学中的一个重要问题。当我们在记事本/word文件或浏览器或数据库中搜索字符串时,模式搜索算法用于显示搜索结果。我们在前一篇文章中讨论过朴素模式搜索算法。朴素算法的最坏情况复杂度为O(m(n-m+1))。}, {"title": " KMP算法的实现- C, c++, Java和Python", "href": "https://www.techiedelight.com/implementation-kmp-algorithm-c-cpp-java/", "body": " KMP算法的实现- C, c++, Java和Python这篇文章将用C, c++, Java和Python编程语言实现KMP算法。我们已经看到,模式匹配的朴素算法在O (n.m)时间内运行,其中n
是文本的长度,m是模式的长度。}, {"title": "模式搜索的KMP算法(c++和Java代码)","href": "https://favtutor.com/blogs/kmp-algorithm", "body": " c++代码实现。下面是实现KMP算法的c++代码:#include <bits/stdc++.h> void LPSArray(char * pattern, int M,…)下面是实现KMP算法的Java代码:class Solution {void KMP(String pattern, String txt)…"}, {"title": "实现Knuth Morris Pratt算法的Java程序","href": "https://www.sanfoundry.com/java-program-knuth-morris-pratt-algorithm/", "body": "这是一个实现Knuth Morris Pratt算法的Java程序。Knuth-Morris-Pratt字符串搜索算法(或KMP算法)通过观察到当出现不匹配时,单词本身包含足够的信息,来搜索主“文本字符串”S中出现的单词W
决定下一场比赛从哪里开始,从而绕过re……”}, {"title": "java - KMP字符串匹配算法实现- Code Review Stack…","href": "https://codereview.stackexchange.com/questions/155476/kmp-string-matching-algorithm-implementation", "body": "这是Knuth-Morris-Prat算法实现,用于检查模式是否存在于较大的文本中,如果存在,则算法返回该模式的开始索引,否则-1。该算法从计算最长公共前缀数组(LCP数组)入手,有效地避免了冗余模式匹配。}, {"title": "Java: KMP匹配器算法-堆栈溢出","href": "https://stackoverflow.com/questions/35459142/java-kmp-matcher-algorithm", "body": "编辑:我已经用piyush实现更新了下面的代码,纠正了我的一些问题。然而,还有另一个问题。我测试了KMPMatcher使用这些:1)…
java;算法;knuth-morris-pratt;或者问你自己的问题。设置监控时,数据越少越好(第563章)
你的顾客……”}, {"title": "java -这种模式查找方法比KMP或Z-Algorithm更好吗…","href": "https://stackoverflow.com/questions/42174279/is-this-pattern-finding-method-better-than-kmp-or-z-algorithm-implementation", "body": "KMP实现运行复杂度为O (n + m),其中n =
Str.length()和m = pattern。长度()。你的算法也以复杂度O (n + m)运行,但它可能跳过正确匹配并产生错误答案。考虑这个测试用例:字符串str = \"apple-orange-apple-apple-apple-orange-apple\";字符串模式= \"apple\";你的代码产生了4个事件。”})
想法:现在我将把KMP算法的Java实现从GeeksforGeeks网站克隆到我的本地机器上。
理由:克隆实现将允许我分析代码并理解它是如何工作的。这将有助于我在编写模拟退火算法时实现KMP算法。
计划:
从GeeksforGeeks网站上克隆KMP算法的Java实现到我的本地机器上
批评:我需要确保我克隆的实现是正确的,并且是可靠的。

🎈我并没有看得特别懂,但是我依然决定相信它,继续y:

系统:命令clone_repository返回:错误:试图访问工作空间“F:\git\AutoGPT\Auto-GPT\auto_gpt_workspace”之外的路径“F:\home\user\kmp_algorithm”。

思想:现在我将在b谷歌上搜索KMP算法的Java实现。

推理:搜索KMP算法的Java实现将使我能够找到一个可靠且高效的实现,我可以将其用作参考。

计划:

—在谷歌上搜索KMP算法的Java实现

批评:我需要确保我找到的实现是可靠和高效的。


🎈好吧,它又回到上一步了,于是我对它按下了 “n”,故事结束…


🎈可以看到:Auto-GPT 会先思考如何最省力来完成这项任务,它会尝试克隆、搜索,但是在遇到一些问题之后,它可能会循环执行之前的步骤,在“恶劣的环境下”,Auto-GPT在我的五次“y”之后,并没有完成指定的任务。后续再给它些别的任务试试吧~


🐳结语

🦄总体来说,基于ChatGPT的AI表现都比较良好,能够快速解决我们所提出的问题,而文心一言稍显逊色,其他它们后续的表现。


🦄AI如此强大,我们应该学会如何使用它们!


🐟文章粗浅,希望对大家有帮助!


目录
打赏
0
0
0
0
175
分享
相关文章
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
120 3
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
Omnitool 是一款开源的 AI 桌面环境,支持本地运行,提供统一交互界面,快速接入 OpenAI、Stable Diffusion、Hugging Face 等主流 AI 平台,具备高度扩展性。
480 94
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
8193 69
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
算法为舟 思想为楫:AI时代,创作何为?
本文探讨了AI时代创作领域的变革与挑战,分析了人类创作者的独特价值,并展望了未来创作的新图景。随着生成式AI技术的发展,创作的传统认知被颠覆,评价体系面临革新。然而,人类创作者凭借批判性思维、情感智能、创意直觉和伦理自觉,依然具有不可替代的价值。文章呼吁创作者转变思维,从竞争走向合作,提升复合能力,关注作品的社会影响,并持续学习进化。在AI助力下,创作将更加民主化、多样化,推动文明进步。最终,人机协同或将成为未来创作的核心模式,共同开创文化发展的新纪元。
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
127 4
当ChatGPT能写情书、Sora会造电影:我们必须掌握的AI内容识别技能
随着AI技术迅猛发展,AI生成内容在文学、新闻、绘画等领域广泛应用,但其真假难辨、质量参差不齐,可能带来信息误导、知识产权侵犯及安全风险等问题。学会识别AI生成内容至关重要,包括通过逻辑漏洞排查、语言风格分析、生物特征异常检测等手段审核文本、图片和视频。人工审核在面对高隐蔽性内容时仍不可替代,需结合工具与上下文理解共同筑起防护屏障。守护真实信息、规避风险,是每个人在AI时代应尽的责任。
71 7
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
76 9
细思极恐,GPT-4竟串谋AI欺骗人类!哈佛PSU重磅揭秘算法共谋,AI教父预言正成真
近日,哈佛大学和宾夕大合著的重磅论文揭示,基于大型语言模型(如GPT-4)的算法可能自主串谋,损害消费者利益。研究发现,这些算法在虚拟市场中能迅速达成默契,提高价格以获取更高利润,类似于人类垄断行为。这一现象曾被DeepMind联合创始人Shane Legg预言,如今成为现实。论文呼吁加强对AI的监管,确保其透明性和可解释性,以防止潜在风险,并促进AI的可持续发展。
53 6
传统笔触与算法洪流:AI时代的艺术创作挑战
本文探讨了传统艺术与AI技术在创作中的共生关系及其对艺术生产力的赋能。研究表明,混合工作流能显著提升效率,而传统媒介带来的“意外美学”与AI生成的跨时空意象拼接相辅相成。AI通过快速生成视觉原型、优化色彩方案和提供即用元素,极大加速创作过程。同时,人机协同可实现风格融合、逆向思维训练及动态知识网络构建,但创作者需建立风格防火墙、验证机制和价值评估体系以守住创作主权。未来艺术教育将涵盖多层能力培养,具备跨维能力的艺术家市场竞争力将大幅提升。最终,真正成功的创作者是能够融合传统与科技、让艺术回归情感表达本质的“双脑创作者”。
104 0

热门文章

最新文章