数学建模常用算法:粒子群算法(PSO)求解二元函数最小值+限定x,y范围测试【java实现--详细注释+Matlab绘制粒子群飞行过程】

简介: 数学建模常用算法:粒子群算法(PSO)求解二元函数最小值+限定x,y范围测试【java实现--详细注释+Matlab绘制粒子群飞行过程】

代码

package com.dam.heuristic.pso.test;
import java.util.List;
import java.util.Random;
public class PsoApi {
    //粒子数量
    private int particleNum;
    //个体学习因子,设置得越大,粒子越容易根据自己的想法飞行,若设置过大,容易跳出局部最优,但收敛较慢
    private double c1;
    //社会学习因子,设置得越大,粒子越容易根据群体的想法飞行,若设置过大,容易陷入局部最优,收敛较快
    private double c2;
    //速度最大值
    private double vMax;
    //速度的惯性权重
    private double w;
    //迭代次数
    private int genMax;
    public PsoApi(int particleNum, double c1, double c2, double vMax, double w, int genMax) {
        this.particleNum = particleNum;
        this.c1 = c1;
        this.c2 = c2;
        this.vMax = vMax;
        this.w = w;
        this.genMax = genMax;
    }
    /**
     * 求解
     */
    public double[][][] solve() {
        变量声明
        //存储粒子
        Particle[] particleArr;
        //所有粒子找到的最优解(由于问题为最小化问题,设置初始最优值为较大的数)
        double gBest = Double.MAX_VALUE;
        //群体最优解对应的x和y
        double bestX = 0;
        double bestY = 0;
        //随机数工具
        Random random = new Random();
        long start = System.currentTimeMillis();
        //存储每一代粒子所在位置
        double[][][] positionArr = new double[this.genMax][this.particleNum][2];
        初始化粒子
        particleArr = new Particle[this.particleNum];
        for (int i = 0; i < particleArr.length; i++) {
            //初始化粒子群,注意:这里设置每个粒子的速度一样,读者可以根据自己的喜爱进行设置
            //初始化粒子的坐标和速度
            particleArr[i] = new Particle(-1000, 1000, -1000, 1000, 0.01, 0.01, random);
            //初始化粒子的函数值(粒子还没有开始飞,当前位置肯定是找到过的最优位置啦)
            particleArr[i].setBestX(particleArr[i].getX());
            particleArr[i].setBestY(particleArr[i].getY());
            double pValue = this.objectFunction(particleArr[i].getX(), particleArr[i].getY());
            particleArr[i].setpBest(pValue);
            //由于问题为最小化问题,目标函数越小越好
            if (pValue < gBest) {
                bestX = particleArr[i].getX();
                bestY = particleArr[i].getY();
                gBest = pValue;
            }
        }
        开始求解
        for (int i = 0; i < this.genMax; i++) {
            //对每个粒子进行操作
            for (int j = 0; j < this.particleNum; j++) {
                ///更新速度
                //更新x轴方向上的速度
                particleArr[j].setxV(this.w * particleArr[j].getxV()
                        + this.c1 * random.nextDouble() * (particleArr[j].getBestX() - particleArr[j].getX())
                        + this.c2 * random.nextDouble() * (bestX - particleArr[j].getX()));
                //处理越界
                if (particleArr[j].getxV() > this.vMax) {
                    particleArr[j].setxV(this.vMax);
                }else if (particleArr[j].getxV() < -this.vMax) {
                    particleArr[j].setxV(-this.vMax);
                }
                //更新y轴方向上的速度
                particleArr[j].setyV(this.w * particleArr[j].getyV()
                        + this.c1 * random.nextDouble() * (particleArr[j].getBestY() - particleArr[j].getY())
                        + this.c2 * random.nextDouble() * (bestY - particleArr[j].getY()));
                //处理越界
                if (particleArr[j].getyV() > this.vMax) {
                    particleArr[j].setyV(this.vMax);
                } else if (particleArr[j].getyV() < -this.vMax) {
                    particleArr[j].setyV(-this.vMax);
                }
                ///更新位置
                double nextX = particleArr[j].getX() + particleArr[j].getxV();
                //处理越界
                if (nextX > particleArr[j].getxMax()) {
                    nextX = particleArr[j].getxMax();
                } else if (nextX < particleArr[j].getxMin()) {
                    nextX = particleArr[j].getxMin();
                }
                particleArr[j].setX(nextX);
                double nextY = particleArr[j].getY() + particleArr[j].getyV();
                //处理越界
                if (nextY > particleArr[j].getyMax()) {
                    nextY = particleArr[j].getyMax();
                } else if (nextY < particleArr[j].getyMin()) {
                    nextY = particleArr[j].getyMin();
                }
                particleArr[j].setY(nextY);
                ///更新粒子历史最优解和粒子全体最优解
                double pValue = this.objectFunction(particleArr[j].getX(), particleArr[j].getY());
                if (pValue < particleArr[j].getpBest()) {
                    particleArr[j].setBestX(particleArr[j].getX());
                    particleArr[j].setBestY(particleArr[j].getY());
                    particleArr[j].setpBest(pValue);
                }
                //由于问题为最小化问题,目标函数越小越好
                if (pValue < gBest) {
                    bestX = particleArr[j].getX();
                    bestY = particleArr[j].getY();
                    gBest = pValue;
                }
                ///存储画图数据
                positionArr[i][j][0] = particleArr[j].getX();
                positionArr[i][j][1] = particleArr[j].getY();
            }
        }
        //输出保留6位小数
        System.out.println("最优目标函数值:" + String.format("%.6f", gBest));
        System.out.println("最优x:" + String.format("%.6f", bestX));
        System.out.println("最优y:" + String.format("%.6f", bestY));
        System.out.println("求解时间:" + (System.currentTimeMillis() - start) + "ms");
        return positionArr;
    }
    /**
     * 目标函数
     *
     * @param x
     * @param y
     * @return
     */
    private double objectFunction(double x, double y) {
        //目标:在变量区间范围最小化 y=x^2+y^2-xy-10x-4y+60
        return Math.pow(x, 2) + Math.pow(y, 2) - x * y - 10 * x - 4 * y + 60;
    }
    /**
     * 粒子类
     */
    class Particle {
        private double x;
        private double y;
        //x,y坐标的上下限
        private double xMin;
        private double xMax;
        private double yMin;
        private double yMax;
        //x轴方向上的速度
        private double xV;
        //y轴方向上的速度
        private double yV;
        //该粒子找到的历史最优解
        private double pBest;
        //该粒子找到的历史最优解对应的x和y
        private double bestX;
        private double bestY;
        public Particle(double xMin, double xMax, double yMin, double yMax, double xV, double yV, Random random) {
            this.xMin = xMin;
            this.xMax = xMax;
            this.yMin = yMin;
            this.yMax = yMax;
            this.xV = xV;
            this.yV = yV;
            //初始化粒子信息
            this.initParticle(random);
        }
        /**
         * 初始化粒子信息
         * 即初始化位置
         */
        public void initParticle(Random random) {
            this.x = random.nextDouble() * (this.xMax - this.xMin) + this.xMin;
            this.y = random.nextDouble() * (this.yMax - this.yMin) + this.yMin;
//            System.out.println("this.x:" + this.x + "," + "this.y:" + this.y);
        }
        public double getX() {
            return x;
        }
        public void setX(double x) {
            this.x = x;
        }
        public double getY() {
            return y;
        }
        public void setY(double y) {
            this.y = y;
        }
        public double getxMin() {
            return xMin;
        }
        public void setxMin(double xMin) {
            this.xMin = xMin;
        }
        public double getxMax() {
            return xMax;
        }
        public void setxMax(double xMax) {
            this.xMax = xMax;
        }
        public double getyMin() {
            return yMin;
        }
        public void setyMin(double yMin) {
            this.yMin = yMin;
        }
        public double getyMax() {
            return yMax;
        }
        public void setyMax(double yMax) {
            this.yMax = yMax;
        }
        public double getxV() {
            return xV;
        }
        public void setxV(double xV) {
            this.xV = xV;
        }
        public double getyV() {
            return yV;
        }
        public void setyV(double yV) {
            this.yV = yV;
        }
        public double getpBest() {
            return pBest;
        }
        public void setpBest(double pBest) {
            this.pBest = pBest;
        }
        public double getBestX() {
            return bestX;
        }
        public void setBestX(double bestX) {
            this.bestX = bestX;
        }
        public double getBestY() {
            return bestY;
        }
        public void setBestY(double bestY) {
            this.bestY = bestY;
        }
    }
}


测试

package com.dam.heuristic.pso.test;
public class PsoMainRun {
    public static void main(String[] args) {
        PsoApi psoApi = new PsoApi(100, 2, 2, 3, 0.9, 1000);
        psoApi.solve();
    }
}


最优目标函数值:8.000000
最优x:8.000000
最优y:6.000000
求解时间:136ms

画图

package com.dam.heuristic.pso.test;
import com.dam.heuristic.vns.test.VnsApi;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.control.Button;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import javafx.util.Duration;
import java.io.File;
import java.io.FileInputStream;
import java.util.Arrays;
public class PsoPaint extends Application {
    //当前的时间轴
    private Timeline nowTimeline;
    //绘图位置坐标
    private double[][][] positionArr;
    public static void main(String[] args) {
        launch(args);
    }
    @Override
    public void start(Stage primaryStage) throws Exception {
        调用算法获取绘图数据
        PsoApi psoApi = new PsoApi(500, 2, 2, 3, 0.9, 6000);
        this.positionArr = psoApi.solve();
        画图
        try {
            BorderPane root = new BorderPane();
            root.setStyle("-fx-padding: 20;");
            Scene scene = new Scene(root, 1600, 900);
            double canvasWid = 800;
            double canvasHei = 800;
            //根据画布大小缩放坐标值
            this.fixPosition(canvasWid - 100, canvasHei - 100);
            //画布和画笔
            HBox canvasHbox = new HBox();
            Canvas canvas = new Canvas();
            canvas.setWidth(canvasWid);
            canvas.setHeight(canvasHei);
            canvasHbox.setPrefWidth(canvasWid);
            canvasHbox.getChildren().add(canvas);
            canvasHbox.setAlignment(Pos.CENTER);
            canvasHbox.setStyle("-fx-spacing: 20;" +
                    "-fx-background-color: #ecf1c3;");
            root.setTop(canvasHbox);
            GraphicsContext paintBrush = canvas.getGraphicsContext2D();
            //启动
            HBox hBox2 = new HBox();
            Button beginButton = new Button("启动粒子群仿真");
            hBox2.getChildren().add(beginButton);
            root.setBottom(hBox2);
            hBox2.setAlignment(Pos.CENTER);
            //启动仿真以及暂停仿真
            beginButton.addEventHandler(MouseEvent.MOUSE_CLICKED, event -> {
                nowTimeline.play();
            });
            //创建扫描线连接动画
            nowTimeline = new Timeline();
            createAnimation(paintBrush, 0.05);
            primaryStage.setScene(scene);
            primaryStage.show();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    /**
     * 修正cityPositionArr的坐标,让画出来的点在画布内
     *
     * @param width
     * @param height
     */
    private void fixPosition(double width, double height) {
        double minX = Double.MAX_VALUE;
        double maxX = -Double.MAX_VALUE;
        double minY = Double.MAX_VALUE;
        double maxY = -Double.MAX_VALUE;
        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                minX = Math.min(minX, this.positionArr[i][j][0]);
                maxX = Math.max(maxX, this.positionArr[i][j][0]);
                minY = Math.min(minY, this.positionArr[i][j][1]);
                maxY = Math.max(maxY, this.positionArr[i][j][1]);
            }
        }
        double multiple = Math.max((maxX - minX) / width, (maxY - minY) / height);
        //转化为正数数
        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                if (minX < 0) {
                    this.positionArr[i][j][0] = this.positionArr[i][j][0] - minX;
                }
                if (minY < 0) {
                    this.positionArr[i][j][1] = this.positionArr[i][j][1] - minY;
                }
            }
        }
//        for (int i = 0; i < this.positionArr[0].length; i++) {
//            System.out.println(Arrays.toString(this.positionArr[99][i]));
//        }
        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                this.positionArr[i][j][0] = this.positionArr[i][j][0]/multiple;
                this.positionArr[i][j][1] = this.positionArr[i][j][1]/multiple;
            }
        }
    }
    /**
     * 用画笔在画布上画出所有的孔
     * 画第i代的所有粒子
     */
    private void drawAllCircle(GraphicsContext paintBrush, int i) {
        paintBrush.clearRect(0, 0, 2000, 2000);
        paintBrush.setFill(Color.RED);
        for (int j = 0; j < this.positionArr[i].length; j++) {
            drawCircle(paintBrush, i, j);
        }
    }
    /**
     * 用画笔在画布上画出一个孔
     * 画第i代的第j个粒子
     */
    private void drawCircle(GraphicsContext paintBrush, int i, int j) {
        double x = this.positionArr[i][j][0];
        double y = this.positionArr[i][j][1];
        double radius = 2;
        // 圆的直径
        double diameter = radius * 2;
        paintBrush.fillOval(x, y, diameter, diameter);
    }
    /**
     * 创建动画
     */
    private void createAnimation(GraphicsContext paintBrush, double speed) {
        for (int i = 0; i < this.positionArr[0].length; i++) {
            int finalI = i;
            KeyFrame keyFrame = new KeyFrame(Duration.seconds(i * speed), event -> drawAllCircle(paintBrush, finalI));
            nowTimeline.getKeyFrames().add(keyFrame);
        }
    }
}


粒子群的收敛过程可以参考下面的视频,刚开始时,粒子被随机放在x和y坐标都属于[-1000,1000]的任意位置,随着迭代次数的增加,粒子慢慢靠拢在一次,直到最后收敛于一个点。

2.png


Matlab作图

上面的图实在是太丑了,也是小编的JavaFx功底不咋行,下面改用Matlab进行绘图。


Java导出Excel数据

package com.dam.heuristic.pso.test;
import org.apache.poi.ss.usermodel.*;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFCellStyle;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
public class PsoMainRun {
    public static void main(String[] args) {
        PsoApi psoApi = new PsoApi(500, 2, 2, 1, 0.5, 1000);
        double[][][] position = psoApi.solve();
        //创建WorkBook
        Workbook workbook = new XSSFWorkbook();
        Sheet xData = workbook.createSheet("xData");
        Sheet yData = workbook.createSheet("yData");
        //获取每一代,每一个粒子的x坐标
        CellStyle cellStyle = workbook.createCellStyle();
        //设置居中
        cellStyle.setAlignment(XSSFCellStyle.ALIGN_CENTER);
        for (int i = 0; i < position.length; i++) {
            Row xRow = xData.createRow(i);
            Row yRow = yData.createRow(i);
            for (int j = 0; j < position[0].length; j++) {
                Cell xCell = xRow.createCell(j);
                xCell.setCellValue(position[i][j][0]);
                //设置数据类型
                xCell.setCellType(XSSFCell.CELL_TYPE_NUMERIC);
                //设置居中
                xCell.setCellStyle(cellStyle);
                Cell yCell = yRow.createCell(j);
                yCell.setCellValue(position[i][j][1]);
                //设置数据类型
                yCell.setCellType(XSSFCell.CELL_TYPE_NUMERIC);
                //设置居中
                yCell.setCellStyle(cellStyle);
            }
        }
        try {
            FileOutputStream fileOutputStream = new FileOutputStream(new File("D:\\Desktop\\paintData.xlsx"));
            workbook.write(fileOutputStream);
            fileOutputStream.close();
            System.out.println("存储文件完成");
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}


数据样式

%% 读取数据
clear;
clc;
% 读取.mat数据
load xData
load yData
%% 绘制函数图像
figure 
% 确定画图区间
x = -1000:50:1000;
y = -1000:50:1000;
[x,y] = meshgrid(x,y);
z = x.^2 + y.^2 - x.*y - 10*x - 4*y + 60;
% 绘制网格
mesh(x,y,z)
% 加上坐标轴的标签
xlabel('x');  ylabel('y');  zlabel('z');  
% 冻结屏幕高宽比,使得一个三维对象的旋转不会改变坐标轴的刻度显示
axis vis3d 
 % 不关闭图形,继续在上面画粒子
hold on 
%% 绘制粒子图形
% 获取行数、列数
[r,c] = size(xData);
h=[];
for i = 1:r
    %获取每代所有粒子的x,y坐标
    xRow = xData(i,:);
    yRow = yData(i,:);
    zRow = xRow.^2 + yRow.^2 - xRow.*yRow - 10*xRow - 4*yRow + 60;
    if i==1
       % scatter3是绘制三维散点图的函数(这里返回h是为了得到图形的句柄,未来我们对其位置进行更新)
       h = scatter3(xRow,yRow,zRow,'*r');
       set(h,'XData',xRow,'YData',yRow,'ZData',zRow);
       pause(0.5);
    else
       %间隔0.04秒再画下一代
       pause(0.04);
       h.XData = xRow;
       h.YData = yRow;
       h.ZData = zRow; 
    end
end


目录
相关文章
|
26天前
|
监控 算法 网络协议
Java 实现局域网电脑屏幕监控算法揭秘
在数字化办公环境中,局域网电脑屏幕监控至关重要。本文介绍用Java实现这一功能的算法,涵盖图像采集、数据传输和监控端显示三个关键环节。通过Java的AWT/Swing库和Robot类抓取屏幕图像,使用Socket进行TCP/IP通信传输图像数据,并利用ImageIO类在监控端展示图像。整个过程确保高效、实时和准确,为提升数字化管理提供了技术基础。
66 15
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
112 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2天前
|
存储 人工智能 算法
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。
|
3天前
|
算法 安全 Java
Java线程调度揭秘:从算法到策略,让你面试稳赢!
在社招面试中,关于线程调度和同步的相关问题常常让人感到棘手。今天,我们将深入解析Java中的线程调度算法、调度策略,探讨线程调度器、时间分片的工作原理,并带你了解常见的线程同步方法。让我们一起破解这些面试难题,提升你的Java并发编程技能!
43 16
|
18天前
|
运维 监控 算法
企业局域网监控软件中 Java 优先队列算法的核心优势
企业局域网监控软件是数字化时代企业网络安全与高效运营的基石,犹如一位洞察秋毫的卫士。通过Java实现的优先队列算法,它能依据事件优先级排序,确保关键网络事件如异常流量、数据泄露等被优先处理,保障系统稳定与安全。代码示例展示了如何定义网络事件类并使用PriorityQueue处理高优先级事件,尤其在面对疑似风险时迅速启动应急措施。这一核心技术助力企业在复杂网络环境中稳健前行,护航业务腾飞。
59 32
|
6天前
|
算法 Java API
Java 方法注释:规范、实用和高质量的写法
本文深入探讨了如何编写高质量的 Java 方法注释
28 11
|
9天前
|
存储 监控 算法
剖析基于Java算法驱动的智能局域网管控之道
本文探讨了基于Java语言的局域网控制方案,结合链表数据结构与令牌桶算法,解决设备管理和流量调度难题。通过链表灵活存储网络设备信息,实现高效设备管理;令牌桶算法则精准控制流量,确保网络平稳运行。二者相辅相成,为校园、企业等局域网提供稳固高效的控制体系,保障业务连续性和数据安全。
|
6天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
42 6
|
6天前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
32 5
|
17天前
|
存储 监控 算法
探秘局域网桌面监控:深入剖析 Java 语言核心算法
在数字化办公时代,局域网桌面监控如同企业的“智慧鹰眼”,确保工作效率与数据安全。本文以Java为载体,揭示哈希表在监控中的关键应用。通过高效的数据结构和算法,哈希表能快速索引设备连接信息,大幅提升监控的时效性和响应速度。代码示例展示了如何用Java实现设备网络连接监控,结合未来技术如AI、大数据,展望更智能的监控体系,助力企业在数字化浪潮中稳健前行。

热门文章

最新文章