重现一条简单SQL的优化过程

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 重现一条简单SQL的优化过程


背景

接到客户诉求说一条SQL长时间运行不出结果,让给看看怎么回事,SQL不复杂,优化措施也不复杂,但是要想SQL达到最优状态,也是需要经过一番考量并做出选择的。下面借实验还原一下此SQL优化过程。

实验:

数据库环境:MySQL5.7.39

测试表结构如下:

mysql> show create table t_1\G
*************************** 1. row ***************************
       Table: t_1
Create Table: CREATE TABLE `t_1` (
  `w_id` int(11) DEFAULT NULL,
  `w_name` varchar(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
1 row in set (0.00 sec)
mysql> show create table t_2\G
*************************** 1. row ***************************
       Table: t_2
Create Table: CREATE TABLE `t_2` (
  `i_id` int(11) NOT NULL,
  `i_name` varchar(24) DEFAULT NULL,
  `i_price` decimal(5,2) DEFAULT NULL,
  `i_data` varchar(50) DEFAULT NULL,
  `i_im_id` int(11) NOT NULL,
  PRIMARY KEY (`i_im_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
1 row in set (0.00 sec)
mysql> show create table t_3\G
*************************** 1. row ***************************
       Table: t_3
Create Table: CREATE TABLE `t_3` (
  `s_w_id` int(11) NOT NULL,
  `s_i_id` int(11) NOT NULL,
  `s_quantity` int(11) DEFAULT NULL,
  `s_ytd` int(11) DEFAULT NULL,
  `s_order_cnt` int(11) DEFAULT NULL,
  `s_remote_cnt` int(11) DEFAULT NULL,
  `s_data` varchar(50) DEFAULT NULL,
  `s_dist_01` char(24) DEFAULT NULL,
  `s_dist_02` char(24) DEFAULT NULL,
  `s_dist_03` char(24) DEFAULT NULL,
  `s_dist_04` char(24) DEFAULT NULL,
  `s_dist_05` char(24) DEFAULT NULL,
  `s_dist_06` char(24) DEFAULT NULL,
  `s_dist_07` char(24) DEFAULT NULL,
  `s_dist_08` char(24) DEFAULT NULL,
  `s_dist_09` char(24) DEFAULT NULL,
  `s_dist_10` char(24) DEFAULT NULL,
  `t_2_id` int(11) DEFAULT NULL,
  `t_1_id` int(11) DEFAULT NULL,
  PRIMARY KEY (`s_w_id`,`s_i_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
1 row in set (0.00 sec)
Create Table: CREATE TABLE `t_4` (
  `w_name` varchar(10) DEFAULT NULL,
  `s_i_id` int(11) NOT NULL,
  `s_quantity` int(11) DEFAULT NULL,
  `s_ytd` int(11) DEFAULT NULL,
  `s_order_cnt` int(11) DEFAULT NULL,
  `s_remote_cnt` int(11) DEFAULT NULL,
  `s_data` varchar(50) DEFAULT NULL,
  `t_2_id` int(11) DEFAULT NULL,
  `i_name` varchar(24) DEFAULT NULL,
  `i_price` decimal(5,2) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

其中t_1表25条记录,t_2表100条记录,t_3表500万条数据。我这里实验数据量少些,客户实际业务表数据量分别是(30,150,2700万)。t_4表为一个历史数据归档表,用于插入数据。

SQL文本展示如下:

insert into t_4
SELECT
  c.w_name,
  a.s_i_id,
  a.s_quantity,
  a.s_ytd,
  a.s_order_cnt,
  a.s_remote_cnt,
  a.s_data,
  a.t_2_id,
  b.i_name,
  b.i_price
FROM
 t_3 a,
 t_2 b,
 t_1 c
WHERE
 a.t_2_id = b.i_id
and a.t_1_id = c.w_id
and a.s_ytd = 0;

查看语句中select部分的执行计划如下图所示:

看到这个计划,就想对数据库说一句:"您辛苦了!"。

优化器选择先对两个小表c,b进行关联,然后得到的结果集再与大表a进行关联,因为语句中c,b两个表没有字段进行直接关联,所以这两个表连接后的结果集是一个笛卡尔积25 *100=2500,因为大表的关联字段上没有索引,所以需要对最内层的大表全表扫描2500次。

这是不是一个大工程呢?数据库任劳任怨,你让它干,它就干,只要你等得起就可以。事实上我们是没有耐心等的。我本来还想看看数据库到底用多久才能给出结果,等了10分钟,实在没有耐心继续等下去了。

这条SQL不复杂吧,就是三张表进行关联,但是关联字段上都没有索引,都进行了全表扫描。那么解决措施就是加索引,但是索引怎么加就需要做出选择了。

有同事就提出这个SQL在大表上全表扫描2500次,在大表的关联字段上加上索引就可以了,看到这里,你有没有认同这个见解呢?我想应该有很多小伙伴是认同的。

不错,给大表加上索引就不用全表扫描了,首先大表加索引,会锁表很长时间,这个索引在客户的生产环境须等到变更窗口才能加,客户等不及,其次你有考虑过这真的是最好的办法吗?

因为我这是实验环境,可以随时给大表加索引,那接下来我们就给大表加上索引试试效果。

mysql> alter table t_3 add key(t_1_id,t_2_id);
Query OK, 0 rows affected (28.35 sec)
Records: 0  Duplicates: 0  Warnings: 0

索引加好之后,执行计划如下:

可以看出优化器并没有选择走索引,依然是使用BNL优化策略,进行全表扫描,为什么不走索引呢?应该是优化器认为索引扫描的成本高于全表扫描的成本,因为这条语句最终结果要返回大表的90%以上的数据,走索引后回表代价是很高的。这一点我们是不认同优化器的,怎么着2500次全表扫描也比每次通过索引范围扫描的代价要高呀,好吧,既然不认同,那么使用force index来干涉优化器决策,让它使用索引。

执行计划如下图所示:

执行计划中显示索引用上了,那实际执行效果如何呢?

mysql> insert into t_4
    -> SELECT
    ->   c.w_name,
    ->   a.s_i_id,
    ->   a.s_quantity,
    ->   a.s_ytd,
    ->   a.s_order_cnt,
    ->   a.s_remote_cnt,
    ->   a.s_data,
    ->   a.t_2_id,
    ->   b.i_name,
    ->   b.i_price
    -> FROM
    ->  t_3 a force index(t_1_id),
    ->  t_2 b,
    ->  t_1 c
    -> WHERE
    ->  a.t_2_id = b.i_id
    -> and a.t_1_id = c.w_id
    -> and a.s_ytd = 0;
Query OK, 4800000 rows affected (4 min 43.57 sec)
Records: 4800000  Duplicates: 0  Warnings: 0

确实效率不错,500万数据需要4 min 43.57 sec,生产环境的2700万数据大概需要半个小时左右。

但这是不是效率最高的办法呢,因为最终结果集会返回大表的90%以上的数据,所以需要对大量的索引数据回表,因为回表是会产生随机IO的,这个回表代价确实比较高,优化器默认也没有选择这种执行计划。如果我们给小表的关联字段上加索引会是什么效果呢?

接下来我给两个小表的关联字段上加了索引。

mysql> alter table t_2 add key(i_id);
Query OK, 0 rows affected (0.05 sec)
Records: 0  Duplicates: 0  Warnings: 0
mysql> alter table t_1 add key(w_id);
Query OK, 0 rows affected (0.03 sec)
Records: 0  Duplicates: 0  Warnings: 0

我们去掉大表的force index,不干涉优化器,让优化器自己做决策。执行计划如下:

上图的执行计划显示,优化器选择了对大表全表扫描,大表做驱动表,驱动两个小表。那这样的实际效果如何呢?

mysql> insert into t_4
    -> SELECT
    ->   c.w_name,
    ->   a.s_i_id,
    ->   a.s_quantity,
    ->   a.s_ytd,
    ->   a.s_order_cnt,
    ->   a.s_remote_cnt,
    ->   a.s_data,
    ->   a.t_2_id,
    ->   b.i_name,
    ->   b.i_price
    -> FROM
    ->  t_3 a,
    ->  t_2 b,
    ->  t_1 c
    -> WHERE
    ->  a.t_2_id = b.i_id
    -> and a.t_1_id = c.w_id
    -> and a.s_ytd = 0;
Query OK, 4800000 rows affected (1 min 59.06 sec)
Records: 4800000  Duplicates: 0  Warnings: 0

这种方式耗时1min 59.06sec ,效率提高1倍多,生产环境的大数据量,效率提升应该更明显。果然采用大表驱动小表这种方式效率提高了,优化器的选择是对的。

选择这种方式的好处:

1.SQL的执行效率高一倍

2.节省空间,因为大表的索引会占用很大的磁盘空间。

3.响应及时,避免了必须等到变更窗口才能加索引的麻烦。

4.不用修改SQL语句

该如何选择是不是很清楚了呢?

到这里似乎优化就结束了,但是如果想要精益求精,追求极致的话,小表上的索引可以建成覆盖索引,防止小表回表取数据。

mysql> alter table t_1 drop key w_id;
Query OK, 0 rows affected (0.02 sec)
Records: 0  Duplicates: 0  Warnings: 0
mysql> alter table t_2 drop key i_id;
Query OK, 0 rows affected (0.02 sec)
Records: 0  Duplicates: 0  Warnings: 0
mysql> alter table t_2 add key(i_id,i_name,i_price);
Query OK, 0 rows affected (0.02 sec)
Records: 0  Duplicates: 0  Warnings: 0
mysql> alter table t_1 add key(w_id,w_name);
Query OK, 0 rows affected (0.02 sec)
Records: 0  Duplicates: 0  Warnings: 0

执行效果如下:

mysql> insert into t_4
    -> SELECT
    ->   c.w_name,
    ->   a.s_i_id,
    ->   a.s_quantity,
    ->   a.s_ytd,
    ->   a.s_order_cnt,
    ->   a.s_remote_cnt,
    ->   a.s_data,
    ->   a.t_2_id,
    ->   b.i_name,
    ->   b.i_price
    -> FROM
    ->  t_3 a,
    ->  t_2 b,
    ->  t_1 c
    -> WHERE
    ->  a.t_2_id = b.i_id
    -> and a.t_1_id = c.w_id
    -> and a.s_ytd = 0;
Query OK, 4800000 rows affected (1 min 38.99 sec)
Records: 4800000  Duplicates: 0  Warnings: 0

可以看出,小表上的索引建成覆盖索引,耗时又缩短了20秒,执行效率更高了。

至此该条SQL的优化结束。

总结

1.本条SQL的最终执行计划是大表驱动小表,这也算是给上篇文章《NL连接一定是小表驱动大表效率高吗》提供了一个案例。

2.优化措施可能有很多不同的选择,要根据实际情况选择最优的,不要草率做出决定。

3.精益求精是优化的极致,但是有时候也是需要做出折中选择的,达到业务运行的要求是目的,这点以后遇到案例再说。

EnjoyGreatSQL:)



相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3月前
|
SQL 存储 关系型数据库
如何巧用索引优化SQL语句性能?
本文从索引角度探讨了如何优化MySQL中的SQL语句性能。首先介绍了如何通过查看执行时间和执行计划定位慢SQL,并详细解析了EXPLAIN命令的各个字段含义。接着讲解了索引优化的关键点,包括聚簇索引、索引覆盖、联合索引及最左前缀原则等。最后,通过具体示例展示了索引如何提升查询速度,并提供了三层B+树的存储容量计算方法。通过这些技巧,可以帮助开发者有效提升数据库查询效率。
222 2
|
14天前
|
SQL Oracle 数据库
使用访问指导(SQL Access Advisor)优化数据库业务负载
本文介绍了Oracle的SQL访问指导(SQL Access Advisor)的应用场景及其使用方法。访问指导通过分析给定的工作负载,提供索引、物化视图和分区等方面的优化建议,帮助DBA提升数据库性能。具体步骤包括创建访问指导任务、创建工作负载、连接工作负载至访问指导、设置任务参数、运行访问指导、查看和应用优化建议。访问指导不仅针对单条SQL语句,还能综合考虑多条SQL语句的优化效果,为DBA提供全面的决策支持。
44 11
|
2月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
2月前
|
SQL 缓存 数据库
SQL慢查询优化策略
在数据库管理和应用开发中,SQL查询的性能优化至关重要。慢查询优化不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将详细介绍针对SQL慢查询的优化策略。
|
2月前
|
SQL 存储 BI
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
|
2月前
|
SQL 数据库
gbase 8a 数据库 SQL优化案例-关联顺序优化
gbase 8a 数据库 SQL优化案例-关联顺序优化
|
2月前
|
SQL 数据库 UED
SQL性能提升秘籍:5步优化法与10个实战案例
在数据库管理和应用开发中,SQL查询的性能优化至关重要。高效的SQL查询不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将分享SQL优化的五大步骤和十个实战案例,帮助构建高效、稳定的数据库应用。
75 3
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
168 10
|
2月前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
3月前
|
SQL 资源调度 分布式计算
如何让SQL跑快一点?(优化指南)
这篇文章主要探讨了如何在阿里云MaxCompute(原ODPS)平台上对SQL任务进行优化,特别是针对大数据处理和分析场景下的性能优化。